cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A051424 Number of partitions of n into pairwise relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 12, 15, 18, 23, 27, 33, 38, 43, 51, 60, 70, 81, 92, 102, 116, 134, 153, 171, 191, 211, 236, 266, 301, 335, 367, 399, 442, 485, 542, 598, 649, 704, 771, 849, 936, 1023, 1103, 1185, 1282, 1407, 1535, 1662, 1790, 1917, 2063, 2245, 2436
Offset: 0

Views

Author

Keywords

Examples

			a(4) = 4 since all partitions of 4 consist of relatively prime numbers except 2+2.
The a(6) = 7 partitions with pairwise coprime parts: (111111), (21111), (3111), (321), (411), (51), (6). - _Gus Wiseman_, Apr 14 2018
		

Crossrefs

Number of partitions of n into relatively prime parts = A000837.
Row sums of A282749.

Programs

  • Haskell
    a051424 = length . filter f . partitions where
       f [] = True
       f (p:ps) = (all (== 1) $ map (gcd p) ps) && f ps
       partitions n = ps 1 n where
         ps x 0 = [[]]
         ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    with(numtheory):
    b:= proc(n, i, s) option remember; local f;
          if n=0 or i=1 then 1
        elif i<2 then 0
        else f:= factorset(i);
             b(n, i-1, select(x->is(xis(x b(n, n, {}):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 14 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i < 2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, # < i &]] + If[i <= n && f ~Intersection~ s == {}, b[n-i, i-1, Select[s ~Union~ f, # < i &]], 0]]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 54}] (* Jean-François Alcover, Oct 03 2013, translated from Maple, after Alois P. Heinz *)

Formula

log a(n) ~ (2*Pi/sqrt(6)) sqrt(n/log n). - Eric M. Schmidt, Jul 04 2013
Apparently no formula or recurrence is known. - N. J. A. Sloane, Mar 05 2017

Extensions

More precise definition from Vladeta Jovovic, Dec 11 2004

A302696 Numbers whose prime indices (with repetition) are pairwise coprime. Nonprime Heinz numbers of integer partitions with pairwise coprime parts.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 44, 46, 48, 51, 52, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 74, 76, 77, 80, 82, 85, 86, 88, 92, 93, 94, 95, 96, 102, 104, 106, 110, 112, 116, 118, 119, 120, 122, 123, 124, 128, 132
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number 36 = prime(1)*prime(1)*prime(2)*prime(2) is not included in the sequence, because the pair of prime indices {2,2} is not coprime. - Gus Wiseman, Dec 06 2021

Examples

			Sequence of integer partitions with pairwise coprime parts begins: (), (1), (11), (21), (111), (31), (211), (41), (32), (1111), (311), (51), (2111), (61), (411), (321).
Missing from this list are: (2), (3), (4), (22), (5), (6), (7), (221), (8), (42), (9), (33), (222).
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
       F:= ifactors(n)[2];
       if nops(F)=1 then if F[1][1] = 2 then return true else return false fi fi;
       if ormap(t -> t[2]>1 and t[1] <> 2, F) then return false fi;
       F:= map(t -> numtheory:-pi(t[1]), F);
       ilcm(op(F))=convert(F,`*`)
    end proc:
    select(filter, [$1..200]); # Robert Israel, Sep 10 2020
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[200],Or[#===1,CoprimeQ@@primeMS[#]]&]
  • PARI
    isA302696(n) = if(isprimepower(n),!(n%2), if(!issquarefree(n>>valuation(n,2)), 0, my(pis=apply(primepi,factor(n)[,1])); (lcm(pis)==factorback(pis)))); \\ Antti Karttunen, Dec 06 2021

Extensions

Clarification (with repetition) added to the definition by Antti Karttunen, Dec 06 2021

A078374 Number of partitions of n into distinct and relatively prime parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 10, 17, 17, 23, 26, 37, 36, 53, 53, 70, 77, 103, 103, 139, 147, 184, 199, 255, 260, 339, 358, 435, 474, 578, 611, 759, 810, 963, 1045, 1259, 1331, 1609, 1726, 2015, 2200, 2589, 2762, 3259, 3509, 4058, 4416, 5119, 5488, 6364, 6882
Offset: 1

Views

Author

Vladeta Jovovic, Dec 24 2002

Keywords

Comments

The Heinz numbers of these partitions are given by A302796, which is the intersection of A005117 (strict) and A289509 (relatively prime). - Gus Wiseman, Oct 18 2020

Examples

			From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(13) = 17 partitions (empty column indicated by dot, A = 10, B = 11, C = 12):
  1   .  21   31   32   51    43    53    54    73     65     75     76
                   41   321   52    71    72    91     74     B1     85
                              61    431   81    532    83     543    94
                              421   521   432   541    92     651    A3
                                          531   631    A1     732    B2
                                          621   721    542    741    C1
                                                4321   632    831    643
                                                       641    921    652
                                                       731    5421   742
                                                       821    6321   751
                                                       5321          832
                                                                     841
                                                                     931
                                                                     A21
                                                                     5431
                                                                     6421
                                                                     7321
(End)
		

Crossrefs

Cf. A047966.
A000837 is the not necessarily strict version.
A302796 gives the Heinz numbers of these partitions.
A305713 is the pairwise coprime instead of relatively prime version.
A332004 is the ordered version.
A337452 is the case without 1's.
A000009 counts strict partitions.
A000740 counts relatively prime compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&]],{n,15}] (* Gus Wiseman, Oct 18 2020 *)

Formula

Moebius transform of A000009.
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + x^n). - Ilya Gutkovskiy, Apr 26 2017

A007359 Number of partitions of n into pairwise coprime parts that are >= 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 4, 6, 5, 5, 8, 9, 10, 11, 11, 10, 14, 18, 19, 18, 20, 20, 25, 30, 35, 34, 32, 32, 43, 43, 57, 56, 51, 55, 67, 78, 87, 87, 80, 82, 97, 125, 128, 127, 128, 127, 146, 182, 191, 185, 184, 193, 213, 263, 290, 279, 258, 271, 312, 354, 404, 402
Offset: 0

Views

Author

N. J. A. Sloane and Mira Bernstein, following a suggestion from Marc LeBrun, Apr 28 1994

Keywords

Comments

This sequence is of interest for group theory. The partitions counted by a(n) correspond to conjugacy classes of optimal order of the symmetric group of n elements: they have no fixed point, their order is the direct product of their cycle lengths and they are not contained in a subgroup of Sym_p for p < n. A123131 gives the maximum order (LCM) reachable by these partitions.

Examples

			The a(17) = 9 strict partitions into pairwise coprime parts that are greater than 1 are (17), (15,2), (14,3), (13,4), (12,5), (11,6), (10,7), (9,8), (7,5,3,2). - _Gus Wiseman_, Apr 14 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, s) option remember; local f;
          if n=0 then 1
        elif i<2 then 0
        else f:= factorset(i);
             b(n, i-1, select(x-> is(x is(x b(n, n, {}):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 14 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&(Length[#]===1||CoprimeQ@@#)&]],{n,20}] (* Gus Wiseman, Apr 14 2018 *)

Formula

a(n) = A051424(n) - A051424(n-1). - Vladeta Jovovic, Dec 11 2004

Extensions

More precise definition from Vladeta Jovovic, Dec 11 2004
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 13 2005

A304711 Heinz numbers of integer partitions whose distinct parts are pairwise coprime.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 82, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.
First differs from A289509 at a(24) = 44, A289509(24) = 42.

Examples

			Sequence of all partitions whose distinct parts are pairwise coprime begins (1), (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]&]

A318978 Heinz numbers of integer partitions with a common divisor > 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Is this the same as A305078 without the leading 2? - R. J. Mathar, Sep 08 2018

Examples

			The sequence of all integer partitions with a common divisor begins: (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9), (3,3), (2,2,2), (10), (11), (12), (6,2), (13), (14), (15), (4,4), (16), (8,2), (17), (18), (4,2,2), (6,3), (19), (20), (21), (22), (2,2,2,2), (23), (10,2), (24), (6,4), (25).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],GCD@@PrimePi/@If[#==1,{},FactorInteger[#]][[All,1]]>1&]

A302697 Odd numbers whose prime indices are relatively prime. Heinz numbers of integer partitions with no 1's and with relatively prime parts.

Original entry on oeis.org

15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 309, 315, 323, 327, 329
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of integer partitions with no 1's and with relatively prime parts begins:
015: (3,2)
033: (5,2)
035: (4,3)
045: (3,2,2)
051: (7,2)
055: (5,3)
069: (9,2)
075: (3,3,2)
077: (5,4)
085: (7,3)
093: (11,2)
095: (8,3)
099: (5,2,2)
105: (4,3,2)
119: (7,4)
123: (13,2)
135: (3,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,200,2],GCD@@primeMS[#]===1&]

A303140 Number of strict integer partitions of n with at least two but not all parts having a common divisor greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 4, 2, 8, 7, 14, 14, 21, 18, 33, 32, 50, 54, 72, 67, 103, 110, 145, 155, 201, 196, 271, 293, 372, 400, 493, 512, 647, 704, 858, 924, 1115, 1167, 1436, 1560, 1854, 2022, 2368, 2510, 3005, 3255, 3804, 4144, 4792, 5116, 5989, 6514, 7486
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2018

Keywords

Examples

			The a(14) = 7 partitions are (932), (8321), (7421), (653), (6521), (6431), (5432).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],UnsameQ@@#&&!CoprimeQ@@#&&GCD@@#===1&]//Length,{n,20}]

A303282 Numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime.

Original entry on oeis.org

18, 36, 42, 45, 50, 54, 72, 75, 78, 84, 90, 98, 99, 100, 105, 108, 114, 126, 130, 135, 144, 150, 153, 156, 162, 168, 174, 175, 180, 182, 195, 196, 198, 200, 207, 210, 216, 222, 225, 228, 230, 231, 234, 242, 245, 250, 252, 258, 260, 266, 270, 275, 279, 285, 288
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of integer partitions whose Heinz numbers belong to this sequence begins (221), (2211), (421), (322), (331), (2221), (22111), (332), (621), (4211), (3221), (441), (522), (3311), (432), (22211).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]

A304712 Number of integer partitions of n whose parts are all equal or whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 43, 54, 70, 86, 105, 130, 162, 196, 240, 286, 339, 405, 485, 573, 674, 790, 922, 1072, 1252, 1456, 1685, 1939, 2226, 2557, 2923, 3349, 3822, 4347, 4931, 5593, 6335, 7170, 8092, 9105, 10233, 11495, 12903, 14458, 16169, 18063
Offset: 0

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1.

Examples

			The a(6) = 10 partitions whose parts are all equal or whose distinct parts are pairwise coprime are (6), (51), (411), (33), (321), (3111), (222), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, s) `if`(n=0, 1, `if`(i<1, 0,
          b(n, i, select(x-> x<=i, s))))
        end:
    b:= proc(n, i, s) option remember; g(n, i-1, s)+(f->
         `if`(f intersect s={}, add(g(n-i*j, i-1, s union f)
            , j=1..n/i), 0))(numtheory[factorset](i))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[Select[IntegerPartitions[n],Or[SameQ@@#,CoprimeQ@@Union[#]]&]//Length,{n,20}]
    (* Second program: *)
    g[n_, i_, s_] := If[n == 0, 1, If[i < 1, 0, b[n, i, Select[s, # <= i &]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + Function[f,
         If[f ~Intersection~ s == {}, Sum[g[n - i*j, i - 1, s ~Union~ f],
         {j, 1, n/i}], 0]][FactorInteger[i][[All, 1]]];
    a[n_] := g[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Showing 1-10 of 25 results. Next