A000740
Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.
Original entry on oeis.org
1, 1, 3, 6, 15, 27, 63, 120, 252, 495, 1023, 2010, 4095, 8127, 16365, 32640, 65535, 130788, 262143, 523770, 1048509, 2096127, 4194303, 8386440, 16777200, 33550335, 67108608, 134209530, 268435455, 536854005, 1073741823, 2147450880
Offset: 1
For n=4, there are 6 compositions of n into coprime parts: <3,1>, <2,1,1>, <1,3>, <1,2,1>, <1,1,2>, and <1,1,1,1>.
From _Gus Wiseman_, Dec 19 2017: (Start)
The a(6) = 27 aperiodic compositions are:
(11112), (11121), (11211), (12111), (21111),
(1113), (1122), (1131), (1221), (1311), (2112), (2211), (3111),
(114), (123), (132), (141), (213), (231), (312), (321), (411),
(15), (24), (42), (51),
(6).
The a(6) = 27 compositions into relatively prime parts are:
(111111),
(11112), (11121), (11211), (12111), (21111),
(1113), (1122), (1131), (1212), (1221), (1311), (2112), (2121), (2211), (3111),
(114), (123), (132), (141), (213), (231), (312), (321), (411),
(15), (51).
The a(6) = 27 compositions with relatively prime run-lengths are:
(11112), (11121), (11211), (12111), (21111),
(1113), (1131), (1212), (1221), (1311), (2112), (2121), (3111),
(114), (123), (132), (141), (213), (231), (312), (321), (411),
(15), (24), (42), (51),
(6).
(End)
- H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag; contribution by A. Douady, p. 165.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 1..3322 (terms 1..300 from T. D. Noe)
- Hunki Baek, Sejeong Bang, Dongseok Kim, and Jaeun Lee, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426 [math.CO], 2014. See Table 2.
- Donald Knuth, Robin Chapman and Reiner Martin, Problem 11243, Perfect Parity Patterns, Am. Math. Monthly 115 (7) (2008) p 668, function c(n).
- Emeric Deutsch and Lafayette College Problem Group, Problem 11161: Compositions without Common Factors, American Mathematical Monthly, vol. 114, No. 4, 2007, p. 363.
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- J. E. Iglesias, A formula for the number of closest packings of equal spheres having a given repeat period, Z. Krist. 155 (1981) 121-127, Table 2.
- Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
- Nicolae Mihalache and Francois Vigneron, Factorization of the quadratic Misiurewicz-Thurston polynomials, arXiv:2506.17662 [math.DS], 2025. See p. 8.
- Robert Munafo, Enumeration of Period-N Mu-Atoms
- Jeffrey Shallit and N. J. A. Sloane, Correspondence 1974-1975
- François Vigneron and Nicolae Mihalache, How to split a tera-polynomial, arXiv:2402.06083 [math.NA], 2024.
- Index entries for sequences related to Lyndon words
Cf.
A000837,
A003239,
A008683,
A008965,
A022553,
A034738,
A035928,
A038199,
A051168,
A054525,
A056267,
A059966,
A143424,
A167606,
A178472,
A216954,
A228369,
A294859,
A296302.
-
with(numtheory): a[1]:=1: a[2]:=1: for n from 3 to 32 do div:=divisors(n): a[n]:=2^(n-1)-sum(a[n/div[j]],j=2..tau(n)) od: seq(a[n],n=1..32); # Emeric Deutsch, Apr 27 2007
with(numtheory); A000740:=n-> add(mobius(n/d)*2^(d-1), d in divisors(n)); # N. J. A. Sloane, Oct 18 2012
-
a[n_] := Sum[ MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 03 2012, after PARI *)
-
a(n) = sumdiv(n,d,moebius(n/d)*2^(d-1))
-
from sympy import mobius, divisors
def a(n): return sum([mobius(n // d) * 2**(d - 1) for d in divisors(n)])
[a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 28 2017
A059966
a(n) = (1/n) * Sum_{ d divides n } mu(n/d) * (2^d - 1).
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806
Offset: 1
a(4)=3: the 3 elements [a,c], [a[a,b]] and d form a basis of all homogeneous elements of degree 4 in the free Lie algebra with generators a of degree 1, b of degree 2, c of degree 3 and d of degree 4.
From _Gus Wiseman_, Dec 19 2017: (Start)
The sequence of Lyndon compositions organized by sum begins:
(1),
(2),
(3),(12),
(4),(13),(112),
(5),(14),(23),(113),(122),(1112),
(6),(15),(24),(114),(132),(123),(1113),(1122),(11112),
(7),(16),(25),(115),(34),(142),(124),(1114),(133),(223),(1213),(1132),(1123),(11113),(1222),(11212),(11122),(111112). (End)
- C. Reutenauer, Free Lie algebras, Clarendon press, Oxford (1993).
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Nicolas Andrews, Lucas Gagnon, Félix Gélinas, Eric Schlums, and Mike Zabrocki, When are Hopf algebras determined by integer sequences?, arXiv:2505.06941 [math.CO], 2025. See p. 17.
- S. V. Duzhin and D. V. Pasechnik, Groups acting on necklaces and sandpile groups, Journal of Mathematical Sciences, August 2014, Volume 200, Issue 6, pp 690-697. See page 85. - N. J. A. Sloane, Jun 30 2014
- Seok-Jin Kang and Myung-Hwan Kim, Free Lie Algebras, Generalized Witt Formula and the Denominator Identity, Journal of Algebra 183, 560-594 (1996).
- Michael J. Mossinghoff and Timothy S. Trudgian, A tale of two omegas, arXiv:1906.02847 [math.NT], 2019.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- Jakob Oesinghaus, Quasi-symmetric functions and the Chow ring of the stack of expanded pairs, arXiv:1806.10700 [math.AG], 2018.
- Robert Schneider, Andrew V. Sills, and Hunter Waldron, On the q-factorization of power series, arXiv:2501.18744 [math.CO], 2025. See p. 6.
Apart from initial terms, same as
A001037.
Cf.
A000225,
A000740,
A008683,
A008965,
A011782,
A060223,
A185700,
A228369,
A269134 A281013,
A296302,
A296373.
-
a059966 n = sum (map (\x -> a008683 (n `div` x) * a000225 x)
[d | d <- [1..n], mod n d == 0]) `div` n
-- Reinhard Zumkeller, Nov 18 2011
-
Table[1/n Apply[Plus, Map[(MoebiusMu[n/# ](2^# - 1)) &, Divisors[n]]], {n, 20}]
(* Second program: *)
Table[(1/n) DivisorSum[n, MoebiusMu[n/#] (2^# - 1) &], {n, 35}] (* Michael De Vlieger, Jul 22 2019 *)
-
from sympy import mobius, divisors
def A059966(n): return sum(mobius(n//d)*(2**d-1) for d in divisors(n,generator=True))//n # Chai Wah Wu, Feb 03 2022
Description corrected by Axel Kleinschmidt, Sep 15 2002
A100953
Number of partitions of n into relatively prime parts such that multiplicities of parts are also relatively prime.
Original entry on oeis.org
1, 1, 0, 1, 2, 5, 5, 13, 14, 25, 28, 54, 54, 99, 105, 160, 192, 295, 315, 488, 546, 760, 890, 1253, 1404, 1945, 2234, 2953, 3459, 4563, 5186, 6840, 7909, 10029, 11716, 14843, 17123, 21635, 25035, 30981, 36098, 44581, 51370, 63259, 73223, 88739, 103048, 124752
Offset: 0
-
read transforms : a000837 := [] : b000837 := fopen("b000837.txt",READ) : bfil := readline(b000837) : while StringTools[WordCount](bfil) > 0 do b := sscanf( bfil,"%d %d") ; a000837 := [op(a000837),op(2,b)] ; bfil := readline(b000837) ; od: fclose(b000837) ; a000837 := subsop(1=NULL,a000837) : a := MOBIUS(a000837) : for n from 1 to 120 do printf("%d, ",op(n,a)) ; od: # R. J. Mathar, Mar 12 2008
# second Maple program:
with(numtheory): with(combinat):
b:= proc(n) option remember; `if`(n=0, 1, add(
mobius(n/d)*numbpart(d), d=divisors(n)))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(
mobius(n/d)*b(d), d=divisors(n)))
end:
seq(a(n), n=0..60); # Alois P. Heinz, Dec 19 2017
-
Table[Length[Select[IntegerPartitions[n],And[GCD@@#===1,GCD@@Length/@Split[#]===1]&]],{n,20}] (* Gus Wiseman, Dec 19 2017 *)
b[n_] := b[n] = If[n==0, 1, Sum[
MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]];
a[n_] := a[n] = If[n==0, 1, Sum[
MoebiusMu[n/d]*b[d], {d, Divisors[n]}]];
a /@ Range[0, 60] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
A296774
Triangle read by rows in which row n lists the compositions of n ordered first by length and then reverse-lexicographically.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 2, 3, 1, 4, 3, 1, 1, 2, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3
Offset: 1
Triangle of compositions begins:
(1),
(2),(11),
(3),(21),(12),(111),
(4),(31),(22),(13),(211),(121),(112),(1111),
(5),(41),(32),(23),(14),(311),(221),(212),(131),(122),(113),(2111),(1211),(1121),(1112),(11111).
Cf.
A066099,
A101211,
A108730,
A124734,
A228369,
A281013,
A294859,
A296302,
A296656,
A296772,
A296773.
A298748
Heinz numbers of aperiodic (relatively prime multiplicities) integer partitions with relatively prime parts.
Original entry on oeis.org
2, 6, 10, 12, 14, 15, 18, 20, 22, 24, 26, 28, 30, 33, 34, 35, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106, 108, 110, 112, 114
Offset: 1
Sequence of partitions begins: (1), (21), (31), (211), (41), (32), (221), (311), (51), (2111), (61), (411), (321), (52), (71), (43), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
-
Select[Range[100],With[{t=Transpose[FactorInteger[#]]},And[GCD@@PrimePi/@t[[1]]===1,GCD@@t[[2]]===1]]&] (* Gus Wiseman, Apr 14 2018 *)
A185700
The number of periods in a reshuffling operation for compositions of n.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 3, 5, 5, 3, 1, 0, 1, 3, 7, 8, 7, 3, 1, 0, 1, 4, 9, 14, 14, 9, 4, 1, 0, 1, 4, 12, 20, 25, 20, 12, 4, 1, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1
Offset: 1
For k=5: T(4)=10 < n < T(5)=15 and all periods are of length 5:
a(11)=1 period: [(4+3+2+1+1), (4+3+2+2), (4+3+3+1), (4+4+2+1), (5+3+2+1)];
a(12)=2 periods: [(4+3+2+2+1), (4+3+3+2), (4+4+3+1), (5+4+2+1), (5+3+2+1+1)]; and [(4+4+2+2), (5+3+3+1), (4+4+2+1+1), (5+3+2+2), (4+3+3+1+1)];
a(13)=2 periods: [(4+4+2+2+1), (5+3+3+2), (4+4+3+1+1), (5+4+2+2), (5+3+3+1+1)]; and [(5+4+3+1), (5+4+2+1+1), (5+3+2+2+1), (4+3+3+2+1), (4+4+3+2)];
a(14)=1 period: [(5+4+3+2), (5+4+3+1+1), (5+4+2+2+1), (5+3+3+2+1), (4+4+3+2+1)].
For k=16; j=8; n=T(k-1)+j=128; 1<q|(16,8) --> {2,4,8} a(128) = c(128) - a(T(7)+4) - a(T(3)+2) - a(T(1)+1) = 810 - 8 - 1 - 1 = 800.
(binomial(16,8)-8*a(T(7)+4)-4*a(T(3)+2)-2*a(T(1)+1))/16 = (12870-64-4-2)/16 = 800 = a(128).
Triangular view, with a(n) distributed in rows k=1,2,3.. according to T(k-1)< n <= T(k):
1; k=1, n=1
1, 0; k=2, n=2..3
1, 1, 0; k=3, n=4..6
1, 1, 1, 0; k=4, n=7..10
1, 2, 2, 1, 0; k=5, n=11..15
1, 2, 3, 2, 1, 0; k=6, n=16..21
1, 3, 5, 5, 3, 1, 0;
1, 3, 7, 8, 7, 3, 1, 0;
1, 4, 9, 14, 14, 9, 4, 1, 0;
1, 4, 12, 20, 25, 20, 12, 4, 1, 0;
1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0;
1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 0;
1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 0;
1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1, 0;
- R. Baumann, Computer-Knobelei, LOGIN (1987), 483-486 (in German).
Cf.
A000740,
A001037,
A008965,
A051168,
A059966,
A060223,
A245558,
A294859,
A296302,
A296373,
A092964,
A245559,
A245558.
-
A000217 := proc(n) n*(n+1)/2 ; end proc:
A185700 := proc(n) local k,j,a,q; k := ceil( (-1+sqrt(1+8*n))/2 ) ; j := n-A000217(k-1) ; if n = 1 then return 1; elif j = k then return 0 ; end if; a := binomial(k,j) ; if not isprime(k) then for q in numtheory[divisors]( igcd(k,j)) minus {1} do a := a- procname(j/q+A000217(k/q-1))*k/q ; end do: end if; a/k ; end proc:
seq(A185700(n),n=1..80) ; # R. J. Mathar, Jun 11 2011
-
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
Table[Length@Select[Join@@Permutations/@Select[IntegerPartitions[n],Length[#]===k&],LyndonQ],{n,10},{k,n}] (* Gus Wiseman, Dec 19 2017 *)
A296373
Triangle T(n,k) = number of compositions of n whose factorization into Lyndon words (aperiodic necklaces) is of length k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 9, 12, 6, 3, 1, 1, 18, 21, 14, 6, 3, 1, 1, 30, 45, 27, 15, 6, 3, 1, 1, 56, 84, 61, 29, 15, 6, 3, 1, 1, 99, 170, 120, 67, 30, 15, 6, 3, 1, 1, 186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1, 335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
3, 3, 1, 1;
6, 5, 3, 1, 1;
9, 12, 6, 3, 1, 1;
18, 21, 14, 6, 3, 1, 1;
30, 45, 27, 15, 6, 3, 1, 1;
56, 84, 61, 29, 15, 6, 3, 1, 1;
99, 170, 120, 67, 30, 15, 6, 3, 1, 1;
186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1;
335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1;
Cf.
A000740,
A001045,
A008965,
A019536,
A059966,
A060223,
A185700,
A228369,
A232472,
A277427,
A281013,
A296302,
A296372.
-
neckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
aperQ[q_]:=UnsameQ@@Table[RotateRight[q,k],{k,Length[q]}];
qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],neckQ[Take[q,#]]&&aperQ[Take[q,#]]&]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[qit[#]]===k&]],{n,12},{k,n}]
-
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
A(n)=[Vecrev(p/y) | p<-EulerMT(y*vector(n, n, sumdiv(n, d, moebius(n/d) * (2^d-1))/n))]
{ my(T=A(12)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 01 2018
A318726
Number of integer compositions of n that have only one part or whose consecutive parts are indivisible and the last and first part are also indivisible.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 5, 3, 8, 13, 12, 23, 27, 56, 64, 100, 150, 216, 325, 459, 700, 1007, 1493, 2186, 3203, 4735, 6929, 10243, 14952, 22024, 32366, 47558, 69906, 102634, 150984, 221713, 325919, 478842, 703648, 1034104, 1519432, 2233062, 3281004, 4821791, 7085359
Offset: 1
The a(10) = 13 compositions:
(10)
(7,3) (3,7) (6,4) (4,6)
(5,3,2) (5,2,3) (3,5,2) (3,2,5) (2,5,3) (2,3,5)
(3,2,3,2) (2,3,2,3)
The a(11) = 12 compositions:
(11)
(9,2) (2,9) (8,3) (3,8) (7,4) (4,7) (6,5) (5,6)
(5,2,4) (4,5,2) (2,4,5)
-
Table[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,({_,x_,y_,_}/;Divisible[x,y])|({y_,_,x_}/;Divisible[x,y])]&]//Length,{n,20}]
-
b(n,k,pred)={my(M=matrix(n,n)); for(n=1, n, M[n,n]=pred(k,n); for(j=1, n-1, M[n,j]=sum(i=1, n-j, if(pred(i,j), M[n-j,i], 0)))); sum(i=1, n, if(pred(i,k), M[n,i], 0))}
a(n)={1 + sum(k=1, n-1, b(n-k, k, (i,j)->i%j<>0))} \\ Andrew Howroyd, Sep 08 2018
A318728
Number of cyclic compositions (necklaces of positive integers) summing to n that have only one part or whose adjacent parts (including the last with first) are coprime.
Original entry on oeis.org
1, 2, 3, 4, 6, 9, 13, 22, 34, 58, 95, 168, 280, 492, 853, 1508, 2648, 4715, 8350, 14924, 26643, 47794, 85779, 154475, 278323, 502716, 908913, 1646206, 2984547, 5418653, 9847190, 17916001, 32625618, 59470540, 108493150, 198094483, 361965239, 661891580, 1211162271
Offset: 1
The a(7) = 13 cyclic compositions with adjacent parts coprime:
7,
16, 25, 34,
115,
1114, 1213, 1132, 1123,
11113, 11212,
111112,
1111111.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,neckQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]]&]],{n,20}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)==1))); vector(n, n, (n > 1) + sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 27 2019
A294859
Triangle whose n-th row is the concatenated sequence of all Lyndon compositions of n in lexicographic order.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 1, 2, 1, 3, 4, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 4, 1, 2, 3, 1, 3, 2, 1, 5, 2, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1
Offset: 1
Triangle of Lyndon compositions begins:
(1),
(2),
(12),(3),
(112),(13),(4),
(1112),(113),(122),(14),(23),(5),
(11112),(1113),(1122),(114),(123),(132),(15),(24),(6),
(111112),(11113),(11122),(1114),(11212),(1123),(1132),(115),(1213),(1222),(124),(133),(142),(16),(223),(25),(34),(7).
Cf.
A000740,
A001037,
A001045,
A008965,
A059966,
A060223,
A066099,
A101211,
A102659,
A124734,
A185700,
A228369,
A281013,
A296302,
A296373,
A296656.
-
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
Table[Sort[Select[Join@@Permutations/@IntegerPartitions[n],LyndonQ],OrderedQ[PadRight[{#1,#2}]]&],{n,7}]
Showing 1-10 of 24 results.
Comments