A228330
Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(4).
Original entry on oeis.org
1, 20, 362, 6504, 114686, 1992536, 34231540, 583027920, 9862508790, 165918037560, 2778642667020, 46358257249200, 770951008563372, 12785838603285104, 211540243555702376, 3492587812271418784, 57557091526140668070, 946970607665938615032, 15557339429900195819164, 255246113991506558429936
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..825
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Remark 3 p. 1882. Omega4(n) = a(n-1).
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
-
List([0..20], n-> Binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1))); # G. C. Greubel, Mar 02 2019
-
[Binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1)): n in [0..20]]; // G. C. Greubel, Mar 02 2019
-
Table[4*Sum[(k+1)^6*(Binomial[2n+1, n-k]/(n+k+2))^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)
-
vector(20, n, n--; binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1))) \\ G. C. Greubel, Mar 02 2019
-
[binomial(4*n,2*n)*(15*n^3+15*n^2+n-1)/((2*n+1)*(4*n-1)) for n in (0..20)] # G. C. Greubel, Mar 02 2019
A228331
Let h(m) denote the sequence whose n-th term is Sum__{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(5).
Original entry on oeis.org
1, 36, 780, 16240, 321300, 6131664, 114017904, 2079380160, 37356642180, 663144710800, 11657925495216, 203295462691776, 3521108298744400, 60632838691387200, 1038859802556120000, 17721669103065158400, 301147406355880764900, 5099997408534884394000, 86106549929771707182000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Omega5. Remark 3 p. 1882.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017, 2013
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
-
Table[Sum[(k+1)^5*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)
A228333
Let h(m) denote the sequence whose n-th term is Sum__{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(7).
Original entry on oeis.org
1, 132, 4260, 120400, 3017700, 69776784, 1524611088, 31951782720, 648578888100, 12837530477200, 248966505964176, 4747739344525632, 89267646282614800, 1658349027407016000, 30489930211792680000, 555544747397829254400, 10042477557290424843300, 180267292319119226298000, 3215718323211443887530000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Omega7. Remark 3 p. 1882.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
-
Table[Sum[(k+1)^7*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)
A241530
a(n) = binomial(n,floor(n/2))*binomial(n+1,floor(n/2+1/2))*(1+floor(n/2))/(1+2*floor(n/2)).
Original entry on oeis.org
1, 2, 4, 12, 36, 120, 400, 1400, 4900, 17640, 63504, 232848, 853776, 3171168, 11778624, 44169840, 165636900, 625739400, 2363904400, 8982836720, 34134779536, 130332794592, 497634306624, 1907598175392, 7312459672336, 28124844893600, 108172480360000
Offset: 0
-
A241530 := n -> binomial(n,iquo(n,2))*binomial(n+1,iquo(n+1,2))
*(1+iquo(n,2))/(1+2*iquo(n,2)); seq(A241530(n), n=0..26);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 2^n,
((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 10 2016
-
CoefficientList[Series[(-EllipticE[16 x^2] + (1 + 4 x) EllipticK[16 x^2])/(2Pi x), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
Table[Binomial[n, #] Binomial[n + 1, Floor[(n + 1)/2]] (1 + #)/(1 + 2 #) &@ Floor[n/2], {n, 0, 26}] (* Michael De Vlieger, Aug 15 2016 *)
A248045
(2*(n-1))! * (2*n-1)! / (n * (n-1)!^3).
Original entry on oeis.org
1, 6, 120, 4200, 211680, 13970880, 1141620480, 111307996800, 12614906304000, 1629845894476800, 236475822507724800, 38072607423743692800, 6735922851893114880000, 1299070835722243584000000, 271245990498804460339200000, 60962536364606302461235200000
Offset: 1
A228332
Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(6).
Original entry on oeis.org
1, 68, 1778, 43080, 958430, 20119736, 405350788, 7921691280, 151231519350, 2834134359000, 52320693313020, 953960351550960, 17212782834351468, 307826474156801840, 5462948893700675720, 96303960593503261984, 1687752152779483045542, 29424712141610821296408, 510621541414656188646220
Offset: 0
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Remark 3 p. 1882. Omega6(n) = a(n-1).
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
-
Table[Sum[(k+1)^6*(Binomial[2n+1, n-k]*2*(k+1)/(n+k+2))^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 08 2013 *)
A082578
a(n) = Sum_{k=0..n} binomial(2*k, k) * binomial(2*k+1,k).
Original entry on oeis.org
1, 7, 67, 767, 9587, 126011, 1711595, 23796515, 336666215, 4828084575, 69994481871, 1023793569567, 15086216016367, 223704570996367, 3335098322412367, 49954148031128767, 751296616443141667
Offset: 0
-
Table[Sum[Binomial[2k,k]*Binomial[2k+1,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
makelist(sum(binomial(2*k,k)*binomial(2*k+1,k),k,0,n),n,0,12);
A002463
Coefficients of Legendre polynomials.
Original entry on oeis.org
1, 3, 30, 175, 4410, 29106, 396396, 2760615, 156434850, 1122854590, 16291599324, 119224885962, 3515605611700, 26077294372500, 388924218927000, 2913690606794775, 350671234206006450, 2647224022927695750, 40095381399899017500, 304513870316075169750
Offset: 1
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 362.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
lista(nn) = {forstep (n=1, nn, 2, lcmc = 1; for (m=0, n\2, lcmc = lcm(lcmc, denominator(binomial(2*n-2*m, n-m) * binomial(2*m, m)/4^n));); m = n\2; print1(lcmc*binomial(2*n-2*m, n-m) * binomial(2*m, m)/4^n, ", "););} \\ Michel Marcus, May 29 2013
-
from sympy import binomial as C, lcm
def a_list(nn):
l = []
for n in range(1, nn + 1, 2):
lcmc = 1
for m in range(n//2 + 1):
lcmc = lcm(lcmc, (C(2*n - 2*m, n - m)*C(2*m, m)/4**n).denominator)
m = n//2
l.append(lcmc*C(2*n - 2*m, n - m)*C(2*m, m)//4**n)
return l # Indranil Ghosh, Jul 02 2017, after PARI code by Michel Marcus
A124051
Quasi-mirror of A062196 formatted as a triangular array.
Original entry on oeis.org
3, 6, 8, 10, 30, 15, 15, 80, 90, 24, 21, 175, 350, 210, 35, 28, 336, 1050, 1120, 420, 48, 36, 588, 2646, 4410, 2940, 756, 63, 45, 960, 5880, 14112, 14700, 6720, 1260, 80, 55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99, 66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120
Offset: 0
Triangle begins as:
3;
6, 8;
10, 30, 15;
15, 80, 90, 24;
21, 175, 350, 210, 35;
28, 336, 1050, 1120, 420, 48;
36, 588, 2646, 4410, 2940, 756, 63;
45, 960, 5880, 14112, 14700, 6720, 1260, 80;
55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99;
66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120;
-
A124051:= func< n,k | Binomial(n+1,n-k+1)*Binomial(n+3,n-k+1) >;
[A124051(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2025
-
for n from 0 to 10 do seq(binomial(n,i-1)*binomial(n+2,n+1-i), i=1..n ) od;
-
A124051[n_, k_]:= Binomial[n+1,n-k+1]*Binomial[n+3,n-k+1];
Table[A124051[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2025 *)
-
def A124051(n,k): return binomial(n+1,n-k+1)*binomial(n+3,n-k+1)
print(flatten([[A124051(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 07 2025
Comments