A346415
Triangle T(n,k), n>=0, 0<=k<=n, read by rows, where column k is (1/k!) times the k-fold exponential convolution of Fibonacci numbers with themselves.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 3, 11, 6, 1, 0, 5, 35, 35, 10, 1, 0, 8, 115, 180, 85, 15, 1, 0, 13, 371, 910, 630, 175, 21, 1, 0, 21, 1203, 4494, 4445, 1750, 322, 28, 1, 0, 34, 3891, 22049, 30282, 16275, 4158, 546, 36, 1, 0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 3, 11, 6, 1;
0, 5, 35, 35, 10, 1;
0, 8, 115, 180, 85, 15, 1;
0, 13, 371, 910, 630, 175, 21, 1;
0, 21, 1203, 4494, 4445, 1750, 322, 28, 1;
0, 34, 3891, 22049, 30282, 16275, 4158, 546, 36, 1;
0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1;
...
-
b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*b(n-j)
*binomial(n-1, j-1)*(<<0|1>, <1|1>>^j)[1, 2]), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(k=0, 0^n, `if`(k=1,
combinat[fibonacci](n), (q-> add(binomial(n, j)*
b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
T:= (n, k)-> b(n, k)/k!:
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, k_] := b[n, k] = If[k == 0, 0^n, If[k == 1, Fibonacci[n], With[{q = Quotient[k, 2]}, Sum[Binomial[n, j] b[j, q] b[n-j, k-q], {j, 0, n}]]]];
T[n_, k_] := b[n, k]/k!;
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 2nd Maple program *)
A347107
a(n) = Sum_{1 <= i < j <= n} j^3*i^3.
Original entry on oeis.org
0, 0, 8, 251, 2555, 15055, 63655, 214918, 616326, 1561110, 3586110, 7612385, 15139553, 28506101, 51229165, 88438540, 147420940, 238291788, 374813076, 575377095, 864177095, 1272587195, 1840775123, 2619572626, 3672629650, 5078879650, 6935344650, 9360309933
Offset: 0
For n=3, a(3) = (2*1)^3+(3*1)^3+(3*2)^3 = 251.
- Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Cf.
A346642 (for nondistinct cubes).
-
CoefficientList[Series[-(x^5 + 64 x^4 + 424 x^3 + 584 x^2 + 179 x + 8) x^2/(x - 1)^9, {x, 0, 27}], x] (* Michael De Vlieger, Feb 04 2022 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,8,251,2555,15055,63655,214918,616326},30] (* Harvey P. Dale, Jul 07 2025 *)
-
a(n) = sum(i=2, n, sum(j=1, i-1, i^3*j^3));
-
{a(n) = n*(n+1)*(n-1)*(21*n^5+36*n^4-21*n^3-48*n^2+8)/672};
-
def A347107(n): return n*(n**2*(n*(n*(n*(n*(21*n + 36) - 42) - 84) + 21) + 56) - 8)//672 # Chai Wah Wu, Feb 17 2022
A103115
a(n) = 6*n*(n-1) - 1.
Original entry on oeis.org
-1, -1, 11, 35, 71, 119, 179, 251, 335, 431, 539, 659, 791, 935, 1091, 1259, 1439, 1631, 1835, 2051, 2279, 2519, 2771, 3035, 3311, 3599, 3899, 4211, 4535, 4871, 5219, 5579, 5951, 6335, 6731, 7139, 7559, 7991, 8435, 8891, 9359, 9839, 10331, 10835, 11351, 11879, 12419
Offset: 0
Jacob Landon (jacoblandon(AT)aol.com), May 09 2009
-
[6*n*(n-1)-1: n in [0..50]]; // Vincenzo Librandi, May 16 2017
-
Table[6n(n-1)-1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{-1,-1,11},50] (* Harvey P. Dale, Nov 14 2011 *)
CoefficientList[Series[(1 - 2 x - 11 x^2) / (x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, May 16 2017 *)
-
a(n)=6*n*(n-1)-1 \\ Charles R Greathouse IV, Jun 16 2017
A110426
The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n, 0 < r <= n (see Example).
Original entry on oeis.org
1, 3, 3, -5, -30, -84, -182, -342, -585, -935, -1419, -2067, -2912, -3990, -5340, -7004, -9027, -11457, -14345, -17745, -21714, -26312, -31602, -37650, -44525, -52299, -61047, -70847, -81780, -93930, -107384, -122232, -138567, -156485, -176085, -197469, -220742, -246012, -273390, -302990
Offset: 1
The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n, 0 < r <=n.
E.g., the row corresponding to 4 contains 4, (3+2),{(1) +(0)+(-1)}, {(-2)+(-3)+(-4)+(-5)} ----> 4,5,0,-14
1
2 1
3 3 -3
4 5 0 -14
5 7 3 -10 -35
6 9 6 -6 -30 -69
...
Sequence contains the row sums.
-
A110426[n_] := n*(n + 1)*(2 - (n - 3)*n)/8; Array[A110426, 50] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 3, -5, -30}, 50] (* Paolo Xausa, Aug 26 2025 *)
-
Vec(x*(1 - 2*x - 2*x^2)/(1 - x)^5 + O(x^50)) \\ Colin Barker, May 27 2017
A259460
From higher-order arithmetic progressions.
Original entry on oeis.org
4, 220, 10500, 535500, 30870000, 2044828800, 156029328000, 13673998800000, 1369285948800000, 155756276676000000, 20005336176265440000, 2884501462544301600000, 464334381775424160000000, 83021688624014300160000000, 16408769917253890176000000000, 3569104362241728159962112000000, 850861011640079911341911040000000
Offset: 0
-
rV := proc(n,a,d)
n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
end proc:
A259460 := proc(n)
mul(rV(i,a,d),i=1..n+2) ;
coeftayl(%,d=0,2) ;
coeftayl(%,a=0,n) ;
end proc:
seq(A259460(n),n=1..18) ; # R. J. Mathar, Jul 14 2015
-
rV[n_, a_, d_] := n (n + 1)/2*a + (n - 1) n (n + 1)/6*d;
A259460[n_] :=
Product[rV[i, a, d], {i, 1, n + 3}] //
SeriesCoefficient[#, {d, 0, 2}] & //
SeriesCoefficient[#, {a, 0, n + 1}] & ;
Table[A259460[n], {n, 0, 16}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
A259463
From higher-order arithmetic progressions.
Original entry on oeis.org
5, 550, 61250, 8330000, 1440600000, 318084480000, 88994505600000, 31196975040000000, 13537335651840000000, 7186069008518400000000, 4614893517270516480000000, 3548831033950800998400000000, 3237226357799023349760000000000, 3472842105575052965314560000000000
Offset: 0
-
rXI := proc(n, a, d)
n*(n+1)*(n+2)/6*a+(n+2)*(n+1)*n*(n-1)/24*d;
end proc:
A259463 := proc(n)
mul(rXI(i, a, d), i=1..n+2) ;
coeftayl(%, d=0, 2) ;
coeftayl(%, a=0, n) ;
end proc:
seq(A259463(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
-
rXI[n_, a_, d_] := n(n+1)(n+2)/6 a + (n+2)(n+1)n(n-1)/24 d;
A259463[n_] := Product[rXI[i, a, d], {i, 1, n+3}]//
SeriesCoefficient[#, {d, 0, 2}]&//
SeriesCoefficient[#, {a, 0, n+1}]&;
Table[A259463[n], {n, 0, 13}] (* Jean-François Alcover, May 02 2023, after R. J. Mathar *)
A191685
Eighth diagonal a(n) = s(n,n-7) of the unsigned Stirling numbers of the first kind with n>7.
Original entry on oeis.org
5040, 109584, 1172700, 8409500, 45995730, 206070150, 790943153, 2681453775, 8207628000, 23057159840, 60202693980, 147560703732, 342252511900, 756111184500, 1599718388730, 3256091103430, 6400590336096, 12191224980000, 22563937825000, 40681506808800
Offset: 8
c=1; a(n+1) = binomial(n+1,2)
c=2; a(n+1) = binomial(n+1,3)*(2+3*n)/4
c=3; a(n+1) = binomial(n+1,4)*(n+n^2)/2
c=4; a(n+1) = binomial(n+1,5)*(-8-10*n+15*n^2 +15*n^3)/48
c=5; a(n+1) = binomial(n+1,6)*(-6*n-7*n^2+2*n^3+ 3*n^4)/16
c=6; a(n+1) = binomial(n+1,7)*(96+140*n-224*n^2-315*n^3+63*n^5)/576
c=7; a(n+1) = binomial(n+1,8)*(80*n+114*n^2-23*n^3-75*n^4-9*n^5+9*n^6)/144
c=8; a(n+1) = binomial(n+1,9)*(-1152-1936*n+2820*n^2+
5320*n^3+735*n^4-1575*n^5-315*n^6+135*n^7)/3840
c=9; a(n+1) = binomial(n+1,10)*(-1008*n-1676*n^2 +100*n^3+1295*n^4+392*n^5-210*n^6-60*n^7 +15*n^8)/768
- K. Seidel, Variation der Binomialkoeffizienten, Bild
- der Wissenschaft, 6 (1980), pp. 127-128.
-
I: programs generate the sequence:
with(combinat): c:=7; a:= proc(n) a(n):=abs(stirling1(n,n-c)); end: seq(a(n), n=c+1..28);
for n from 7 to 27 do a(n+1) := binomial(n+1,8)*(80*n+ 114*n^2- 23*n^3- 75*n^4- 9*n^5+ 9*n^6)/144 end do: seq(a(n),n=8..28);
II: program generates explicit formulas for a(n+1) = s(n+1,n+1-c):
k[1,0]:=1: v:=1:
for c from 2 to 10 do
c1:=c-1: c2:=c-2: p0:=0:
for j from 0 to c2 do p0:=p0+k[c1,j]*m^j: end do:
f:=expand(2*c*(m+1)*p0/v):
p1:=0: p2:=0:
for j from 0 to c1 do
p1:=p1+k[c,j]*(m+1)^j:
p2:=p2+k[c,j]*m^j:
end do:
g:=collect((m+2)*p1-(m-c1)*p2-f,m):
kh[0]:=rem(g,m,m): Mk:=[kh[0]]: Mv:=[k[c,0]]:
for j from 1 to c1 do
kh[j]:=coeff(g,m^j):
Mk:=[op(Mk),kh[j]]: Mv:=[k[c,j],op(Mv)]:
end do:
sol:=solve(Mk,Mv):
v:=1:
for j from 1 to c do
k[c,c-j]:=eval(k[c,c-j],sol[1,j]):
nen[j]:=denom(k[c,c-j]):
v:=ilcm(v,nen[j]):
end do:
for j from 0 to c1 do k[c,j]:=k[c,j]*v:
printf("%8d",k[c,j]): end do:
p3:=0:
for j from 0 to c1 do p3:=p3+k[c,j]*n^j: end do:
s[n+1,n+1-c]:=binomial(n+1,c+1)*(c+1)*p3/(2^c*k[c,c1]):
end do:
for c from 2 to 10 do print("%a\n",s[n+1,n+1-c]):
end do:
A253171
a(n) = number of permutations of (1,2,...,n) producible by an ordered triple of distinct transpositions.
Original entry on oeis.org
3, 12, 60, 240, 756, 1988, 4572, 9495, 18205, 32736, 55848, 91182, 143430, 218520, 323816, 468333, 662967, 920740, 1257060, 1689996, 2240568, 2933052, 3795300, 4859075, 6160401, 7739928, 9643312, 11921610, 14631690, 17836656, 21606288, 26017497, 31154795
Offset: 3
For n=4, the 12 permutations are 0132, 0213, 0321, 1023, 1230, 1302, 2031, 2103, 2310, 3012, 3120, and 3201. For example, 0123 is permuted into 0132 by ((b,d),(c,d), (b,c)).
Cf.
A000914, for two transpositions.
A259457
From higher-order arithmetic progressions.
Original entry on oeis.org
3, 66, 1050, 15300, 220500, 3245760, 49533120, 789264000, 13172544000, 230519520000, 4229703878400, 81315551116800, 1636227552960000, 34417989365760000, 755835784704000000, 17305616126582784000, 412559358036553728000, 10227311816872550400000, 263309943217447526400000, 7032029553158658048000000
Offset: 0
-
rX := proc(n, a, d)
n*a+(n-1)*n/2*d;
end proc:
A259457 := proc(n)
mul(rX(i, a, d), i=1..n+2) ;
coeftayl(%, d=0, 2) ;
coeftayl(%, a=0, n) ;
end proc:
seq(A259457(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
-
rX[n_, a_, d_] := n*a + (n-1)*n/2*d;
A259457[n_] :=
Product[rX[i, a, d], {i, 1, n+3}]//
SeriesCoefficient[#, {d, 0, 2}]&//
SeriesCoefficient[#, {a, 0, n+1}]&;
Table[A259457[n], {n, 0, 17}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
A024169
Integer part of ((2nd elementary symmetric function of 1,2,...,n)/(1+2+...+n)).
Original entry on oeis.org
0, 0, 1, 3, 5, 8, 11, 15, 19, 24, 29, 34, 41, 47, 54, 62, 70, 79, 88, 98, 108, 119, 130, 141, 154, 166, 179, 193, 207, 222, 237, 253, 269, 286, 303, 320, 339, 357, 376, 396, 416, 437, 458, 480, 502
Offset: 1
-
List([1..50],n->Int((1/12)*(n-1)*(3*n+2))); # Muniru A Asiru, May 19 2018
-
seq(floor((1/12)*(n-1)*(3*n+2)),n=1..50); # Muniru A Asiru, May 19 2018
-
Table[Floor[1/12 (n - 1) (3 n + 2)], {n, 45}] (* Ivan Neretin, May 19 2018 *)
Comments