cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A057208 Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Examples

			a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4+q^2][[All,1]],Mod[#,8]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)
  • PARI
    lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k,1]; break);); print1(v[n], ", "););} \\ Michel Marcus, Oct 27 2014

Extensions

More terms from Sean A. Irvine, Oct 26 2014

A051334 Euclid-Mullin sequence (A000945) with initial value a(1)=8191 instead of a(1)=2.

Original entry on oeis.org

8191, 2, 3, 7, 53, 1399, 5, 19, 646843, 26945441, 109, 443, 90670999, 280460690293140589, 907, 16293787, 3655513, 499483, 131, 21067, 143797, 54540542259000816707816058313971443, 392963, 977, 11, 5021, 179, 439, 353, 34417238589462247, 1193114397863177, 13, 59, 31643, 79399, 73, 43, 16639867
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=8191; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=my(f=factor(n)[1,1]);f;
    first(m)={my(v=vector(m)); v[1]=8191; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v;} /* Anders Hellström, Aug 18 2015 */

Extensions

More terms from Sean A. Irvine, Sep 20 2012
a(30)-a(38) from Charles R Greathouse IV, Sep 21 2012

A051309 Euclid-Mullin sequence (A000945) with initial value a(1)=11 instead of a(1)=2.

Original entry on oeis.org

11, 2, 23, 3, 7, 10627, 433, 17, 13, 10805892983887, 73, 6397, 19, 489407, 2753, 87491, 18618443, 5, 31, 113, 41, 10723, 35101153, 25243, 374399, 966011, 293821591198219762366057, 234947, 4729, 27953, 3256171, 331, 613, 67, 272646324430637, 34281113, 21050393332691947013, 61, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=11; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a,10]
  • PARI
    lpf(n)=factor(n)[1,1]
    first(m)=my(v=vector(m)); v[1]=11; for(i=2, m, v[i]=lpf(1+prod(j=1, i-1, v[j]))); v;
    \\ Anders Hellström, Aug 22 2015

Extensions

Corrected and extended by Sean A. Irvine, Apr 13 2008

A057207 a(1)=5, a(n) is the smallest prime dividing 4*Q^2 + 1 where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 13, 8693, 1997, 6029, 61, 3181837, 113, 181, 1934689, 6143090225314378441493352126119201470973493456817556328833988172277, 4733, 3617, 41, 68141, 37, 51473, 17, 821, 598201519454797, 157, 9689, 2357, 757, 149, 293, 5261
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

Removed redundant mod(p,4) = 1 criterion from definition. By quadratic reciprocity, all factors of 1 + 4Q^2 are congruent to 1 (mod 4). See comments at the end of the b-file for an additional eight terms not proved, but nevertheless highly likely to be correct. - Daran Gill, Mar 23 2013

Examples

			a(4)=53 is the smallest prime divisor of 4*(5.101.1020101)^2+1 = 1061522231810040101 = 53*1613*12417062216309.
		

References

  • P. G. L. Dirichlet (1871): Vorlesungen über Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    t = {5}; Do[q = Times @@ t; AppendTo[t, FactorInteger[1 + 4*q^2][[1, 1]]], {6}]; t (* T. D. Noe, Mar 27 2013 *)

Extensions

Eight more terms, a(9)-a(16), from Max Alekseyev, Apr 27 2009
Seventeen more terms, a(17)-a(33), added by Daran Gill, Mar 23 2013

A051312 Euclid-Mullin sequence (A000945) with initial value a(1)=19 instead of a(1)=2.

Original entry on oeis.org

19, 2, 3, 5, 571, 271, 457, 397, 1123, 23, 103, 42572757267735264511, 313, 17, 16013177, 7951, 1259, 41, 1531, 11, 83, 53, 67, 7, 21397, 13, 1619, 1274209367143, 433, 37, 491, 29, 658837, 135202080527, 163, 587, 31, 2797, 35286479
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=19; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=19; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 31 2015

A084599 a(1) = 2, a(2) = 3; for n >= 2, a(n+1) is largest prime factor of (Product_{k=1..n} a(k)) - 1.

Original entry on oeis.org

2, 3, 5, 29, 79, 68729, 3739, 6221191, 157170297801581, 70724343608203457341903, 46316297682014731387158877659877, 78592684042614093322289223662773, 181891012640244955605725966274974474087, 547275580337664165337990140111772164867508038795347198579326533639132704344301831464707648235639448747816483406685904347568344407941
Offset: 1

Views

Author

Marc LeBrun, May 31 2003

Keywords

Comments

Like the Euclid-Mullin sequence A000946, but subtracting rather than adding 1 to the product.

Examples

			a(4)=29 since 2*3*5=30 and 29 is the largest prime factor of 30-1
a(5)=79 since 2*3*5*29=870 and 79 is the largest prime factor of 870-1=869=11*79.
		

Crossrefs

Essentially the same as A005266.

Extensions

More terms from Hugo Pfoertner, May 31 2003, using Dario Alpern's ECM.
The next term a(15) is not known. It requires the factorization of the 245-digit composite number which remains after eliminating 7 smaller factors.

A258581 a(1) = 2; for n > 1 if n is even a(n) = gpf(1 + Product_{odd m,m

Original entry on oeis.org

2, 3, 2, 5, 2, 3, 23, 37, 17, 149, 761, 50647, 4799, 411527, 18871308021859, 10312625105789, 17838863896549, 57892815889963361050999657943, 2252973546284243766517, 1849093263449444009859625443689931115519009693
Offset: 1

Views

Author

Anders Hellström, Jul 15 2015

Keywords

Crossrefs

Programs

  • PARI
    gpf(n)=my(v=factor(n)[, 1]); v[#v];
    main(size)=my(v=vector(size), i, odd=2, even=1); v[1]=2; for(i=2, size, if(i%2==0, v[i]=gpf(odd+1); even*=v[i], v[i]=gpf(even+1); odd*=v[i])); v;

A051324 Euclid-Mullin sequence (A000945) with initial value a(1)=71 instead of a(1)=2.

Original entry on oeis.org

71, 2, 11, 3, 43, 201499, 67, 5, 487, 19, 967, 13, 131, 17, 3523392679146994953040171, 7, 633046028131441, 197, 1313225762816449, 22441, 29, 7039, 2357, 12264112894355231632110401532068053014661
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=71; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=my(f=factor(n)[1, 1]); f
    first(m)=my(v=vector(m)); v[1]=71; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v \\ Anders Hellström, Dec 04 2015

Extensions

a(24) from Robert Price, Jul 11 2015

A051330 Euclid-Mullin sequence (A000945) with initial value a(1)=97 instead of a(1)=2.

Original entry on oeis.org

97, 2, 3, 11, 19, 7, 461, 719, 5, 1411130344471, 139, 43, 36599, 1097, 17, 104370954301, 23, 13, 59, 41, 83, 196777201807603861, 569, 31, 149, 131, 7408846366410141253195388029, 29, 27017, 192228034594584553, 307, 2677, 73, 263, 389, 10463, 61, 47, 617, 743
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=97; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    lpf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=97; for(i=2, m, v[i]=lpf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 31 2015

Extensions

a(34)-a(45) from Robert Price, Jul 20 2015

A057206 Primes of the form 6k+5 generated recursively: a(1)=5; a(n) = min{p, prime; p mod 6 = 5; p | 6Q-1}, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 29, 11, 1367, 13082189, 89, 59, 29819952677, 91736008068017, 17, 887050405736870123700827, 688273423680369013308306870159348033807942418302818522537, 74367405177105011, 12731422703, 1812053
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

There are infinitely many primes of the form 6k + 5, and this sequence figures in the classic proof of that fact. - Alonso del Arte, Mar 02 2017

Examples

			a(3) = 11 is the smallest prime divisor of the form 6k + 5 of 6 * (5 * 29) - 1 = 6Q - 1 = 11 * 79 = 869.
		

References

  • Dirichlet, P. G. L. (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    primes5mod6 = {5}; q = 1;For[n = 2, n <= 10, n++, q = q * Last[ primes5mod6]; AppendTo[primes5mod6, Min[Select[FactorInteger[6 * q - 1][[All, 1]], Mod[#, 6] == 5 &]]];]; primes5mod6 (* Robert Price, Jul 18 2015 *)
  • PARI
    main(size)={my(v=vector(size),i,q=1,t);for(i=1,size,t=1;while(!(prime(t)%6==5&&(6*q-1)%prime(t)==0),t++);v[i]=prime(t);q*=v[i]);v;} /* Anders Hellström, Jul 18 2015 */

Extensions

a(13)-a(17) from Robert Price, Jul 18 2015
Previous Showing 11-20 of 52 results. Next