cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 87 results. Next

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A168635 a(n) = n^7*(n + 1)/2.

Original entry on oeis.org

0, 1, 192, 4374, 40960, 234375, 979776, 3294172, 9437184, 23914845, 55000000, 116923026, 232906752, 439239619, 790601280, 1366875000, 2281701376, 3693048057, 5816090304, 8938717390, 13440000000, 19811973951, 28685115712, 40857905364, 57330892800
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n^7*(n^k + 1)/2: A001015 (k=0), this sequence (k=1), A168636 (k=2), A168660 (k=3), A168661 (k=4), A168662 (k=5), A168663 (k=6), A168664 (k=7), A168665 (k=8), A168666 (k=9), A168667 (k=10).

Programs

Formula

From G. C. Greubel, Jul 28 2016: (Start)
G.f.: x*(1 + 183*x + 2682*x^2 + 8422*x^3 + 7197*x^4 + 1611*x^5 + 64*x^6)/(1 - x)^9.
E.g.f.: (1/2)*x*(2 + 190*x + 1267*x^2 + 2051*x^3 + 1190*x^4 + 287*x^5 + 29*x^6 + x^7)*exp(x). (End)

A266314 Least positive integer x such that n + x^7 = y^2 + z^2 for some positive integers y and z, or 0 if no such x exists.

Original entry on oeis.org

2, 1, 2, 13, 1, 3, 7, 1, 2, 1, 3, 15, 1, 6, 11, 11, 1, 1, 2, 1, 2, 2, 7, 3, 1, 1, 3, 5, 1, 2, 7, 1, 2, 1, 2, 5, 1, 4, 3, 1, 1, 2, 2, 7, 1, 2, 7, 3, 5, 1, 2, 1, 1, 2, 11, 21, 5, 1, 3, 5, 1, 3, 3, 3, 1, 2, 2, 1, 4, 2, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Dec 27 2015

Keywords

Comments

The general conjecture in A266277 implies that for each odd prime p and any integer m there are positive integers x, y and z such that m + x^p = y^2 + z^2.
For k = 4,6,8,... and any integer m == 6 (mod 8), there are no integers x, y and z with m + x^k = y^2 + z^2 since m + x^k with x an integer is congruent to 6 or 7 modulo 8.
As 2j+1 = (j+1)^2 - j^2, if m - z^k is odd with |m - z^k| > 1 then m + x^2 = y^2 + z^k for some positive integers x and y.

Examples

			a(2) = 2 since 2 + 2^7 = 3^2 + 11^2.
a(3) = 13 since 3 + 13^7 = 554^2 + 7902^2.
a(5) = 3 since 5 + 3^7 = 16^2 + 44^2.
a(6) = 7 since 6 + 7^7 = 30^2 + 907^2.
a(462) = 71 since 462 + 71^7 = 456497^2 + 2981062^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[x=1;Label[bb];Do[If[SQ[n+x^7-y^2],Print[n," ",x];Goto[aa]],{y,1,Sqrt[(n+x^7)/2]}];x=x+1;Goto[bb];Label[aa];Continue,{n,1,70}]
    (* second program: *)
    xmax = 100; r[n_, x_] := Reduce[y>0 && z>0 && n+x^7 == y^2+z^2, {y, z}, Integers]; a[n_] := For[x=1, x <= xmax, x++, If[r[n, x] =!= False, Return[x]]] /. Null -> 0; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 27 2015 *)

A016951 a(n) = (6*n + 3)^7.

Original entry on oeis.org

2187, 4782969, 170859375, 1801088541, 10460353203, 42618442977, 137231006679, 373669453125, 897410677851, 1954897493193, 3938980639167, 7446353252589, 13348388671875, 22876792454961, 37725479487783, 60170087060757, 93206534790699, 140710042265625, 207616015289871
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^7: n in [0..40]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^7; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^7.
a(n) = 3^7*A016759(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/279936.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/403107840. (End)

A016963 a(n) = (6*n + 4)^7.

Original entry on oeis.org

16384, 10000000, 268435456, 2494357888, 13492928512, 52523350144, 163840000000, 435817657216, 1028071702528, 2207984167552, 4398046511104, 8235430000000, 14645194571776, 24928547056768, 40867559636992, 64847759419264, 100000000000000, 150363025899136, 221068140740608
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^7: n in [0..20]]; // Vincenzo Librandi, May 07 2011
  • Mathematica
    (6*Range[0,20]+4)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{16384,10000000,268435456,2494357888,13492928512,52523350144,163840000000,435817657216},20] (* Harvey P. Dale, Mar 03 2018 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^7.
a(n) = 2^7*A016795(n).
Sum_{n>=0} 1/a(n) = 1093*zeta(7)/279936 - 7*Pi^7/(3149280*sqrt(3)). (End)

A016975 a(n) = (6*n + 5)^7.

Original entry on oeis.org

78125, 19487171, 410338673, 3404825447, 17249876309, 64339296875, 194754273881, 506623120463, 1174711139837, 2488651484819, 4902227890625, 9095120158391, 16048523266853, 27136050989627, 44231334895529, 69833729609375, 107213535210701, 160578147647843, 235260548044817
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001015 (n^7).

Programs

  • Magma
    [(6*n+5)^7: n in [0..25]]; // Vincenzo Librandi, May 11 2011
  • Mathematica
    (6Range[0,20]+5)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{78125,19487171,410338673,3404825447,17249876309,64339296875,194754273881,506623120463},20] (* Harvey P. Dale, Jan 30 2013 *)

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Jan 30 2013
From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^7.
Sum_{n>=0} 1/a(n) = 138811*zeta(7)/279936 - 301*Pi^7/(1049760*sqrt(3)). (End)

A113852 Numbers whose prime factors are raised to the seventh power.

Original entry on oeis.org

128, 2187, 78125, 279936, 823543, 10000000, 19487171, 62748517, 105413504, 170859375, 410338673, 893871739, 1801088541, 2494357888, 3404825447, 8031810176, 17249876309, 21870000000, 27512614111, 42618442977, 52523350144, 64339296875, 94931877133, 114415582592
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Crossrefs

Proper subset of A001015.
Nonunit terms of A329332 column 7 in ascending order.

Programs

  • Mathematica
    Select[Range@34^7, Union[Last /@ FactorInteger@# ] == {7} &] (* Robert G. Wilson v, Jan 26 2006 *)
    Select[Range[2, 34], SquareFreeQ]^7 (* Amiram Eldar, Oct 13 2020 *)
  • PARI
    allpwrfact(n,p) = /* All prime factors are raised to the power p */ { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113852(n):
        def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**7 # Chai Wah Wu, Feb 25 2025

Formula

From Amiram Eldar, Oct 13 2020: (Start)
a(n) = A005117(n+1)^7.
Sum_{n>=1} 1/a(n) = zeta(7)/zeta(14) - 1. (End)

Extensions

More terms from Robert G. Wilson v, Jan 26 2006

A343287 Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^(k^7).

Original entry on oeis.org

1, 128, 2187, 24640, 78125, 559872, 823543, 4552064, 7175547, 20000000, 19487171, 125551296, 62748517, 210827008, 341718750, 818079776, 410338673, 2142910080, 893871739, 4485000000, 3602177082, 4988715776, 3404825447, 26025929856, 9155312500, 16063620352, 22666490820
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2021

Keywords

Crossrefs

A010802 14th powers: a(n) = n^14.

Original entry on oeis.org

0, 1, 16384, 4782969, 268435456, 6103515625, 78364164096, 678223072849, 4398046511104, 22876792454961, 100000000000000, 379749833583241, 1283918464548864, 3937376385699289, 11112006825558016, 29192926025390625, 72057594037927936, 168377826559400929, 374813367582081024
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013672 (zeta(14)), A001015 (n^7).
Cf. A000290, (squares), A000578, (cubes), A000583, (4th powers), A000584, (5th powers), A008455 (11th powers).

Programs

Formula

Totally multiplicative with a(p) = p^14 for prime p. Multiplicative with a(p^e) = p^(14e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-14).
Sum_{n>=1} 1/a(n) = 2*Pi^14/18243225 = A013672. (End)
a(n) = A001015(n)^2. - Michel Marcus, Feb 28 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 8191*zeta(14)/8192 = 8191*Pi^14/74724249600. - Amiram Eldar, Oct 08 2020

A132214 Numbers that are sums of seventh powers of two distinct primes.

Original entry on oeis.org

2315, 78253, 80312, 823671, 825730, 901668, 19487299, 19489358, 19565296, 20310714, 62748645, 62750704, 62826642, 63572060, 82235688, 410338801, 410340860, 410416798, 411162216, 429825844, 473087190, 893871867, 893873926
Offset: 1

Views

Author

Jonathan Vos Post, Aug 13 2007

Keywords

Comments

This is to 7th powers as A130555 is to 6th powers, A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These can never be prime, as the polynomial x^7 + y^7 factors over Z. Note however that A132215, which is the analog for eighth powers, can be prime, as seen also in A132216.

Examples

			a(1) = 2^7 + 3^7 = 2315 = 5 * 463.
		

Crossrefs

Programs

  • Maple
    P:= select(isprime, [2,seq(i,i=3..100,2)]): nP:= nops(P):
    N:= 2^7 + P[-1]^7:
    sort(convert(select(`<=`, {seq(seq(P[i]^7+P[j]^7,j=i+1..nP),i=1..nP-1)},N),list)); # Robert Israel, Jul 01 2024
  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^7 + Prime[k]^7, {n, 15}, {k, n - 1}]]], # <= Prime[15^7] &]
    Union[Total/@(Subsets[Prime[Range[10]],{2}]^7)] (* Harvey P. Dale, Jan 03 2012 *)

Formula

{A001015(A000040(i)) + A001015(A000040(j)) for i > j}.
Previous Showing 31-40 of 87 results. Next