cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 87 results. Next

A075668 Sum of next n 7th powers.

Original entry on oeis.org

1, 2315, 374445, 17703664, 394340375, 5265954441, 48574262275, 338837482880, 1900477947429, 8950536157375, 36536761179281, 132397570996560, 433806511149115, 1303971065324669, 3637715990646375, 9507513902672896, 23461050872397545, 55013865421504275
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^7 = 1; a(2) = 2^7 + 3^7 = 2315; a(3) = 4^7 + 5^7 + 6^7 = 374445; a(4) = 7^7 + 8^7 + 9^7 + 10^7 = 17703664.
		

Crossrefs

Cf. A001015 (7th powers).
Cf. A006003 (for natural numbers), A072474 (for squares), A075664 - A075671 (for 3rd to 10th powers), A069876 (n-th powers).

Programs

  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=7; Table[Sum[i^s, {i, i1, i2}], {n, 20}]

Formula

a(n) = Sum_{i=n*(n-1)/2+1..n*(n-1)/2+n} i^7.
a(n) = (3*n^15 + 42*n^13 + 168*n^11 + 206*n^9 - 11*n^7 - 56*n^5 + 32*n^3)/384. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(x^14 +2299*x^13 +337525*x^12 +11989784*x^11 +154720571*x^10 +875467853*x^9 +2397170367*x^8 +3336829200*x^7 +2397170367*x^6 +875467853*x^5 +154720571*x^4 +11989784*x^3 +337525*x^2 +2299*x +1)/(x-1)^16. - Colin Barker, Jul 22 2012

A218574 Numbers k such that k^2 + 1 is divisible by a 7th power.

Original entry on oeis.org

32318, 45807, 110443, 123932, 188568, 202057, 266693, 280182, 344818, 358307, 422943, 436432, 501068, 514557, 579193, 592682, 657318, 670807, 735443, 748932, 813568, 827057, 891693, 905182, 969818, 983307
Offset: 1

Views

Author

Michel Lagneau, Nov 02 2012

Keywords

Examples

			32318 is in the sequence because 32318^2 + 1 =  5 ^ 7 * 29 * 461.
6826318 is in the sequence because 6826318^2 + 1 = 5 ^ 3 * 13 ^ 8 * 457.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1500000],Max[Transpose[FactorInteger[#^2+1]][[2]]]>6&]

A257659 Numbers that are not seventh powers, but can be written as the sum of the seventh powers of two or more of their prime factors.

Original entry on oeis.org

275223438741, 4561072096211306682, 9306119954843409393442022085025276
Offset: 1

Views

Author

Felix Fröhlich, Jul 26 2015

Keywords

Comments

From Robert Israel, Nov 02 2016: (Start)
Each term is the sum of the seventh powers of three or more of its prime factors (since the sum of seventh powers of two distinct primes would not be divisible by those primes).
It is possible that the three terms shown are just the smallest examples presently known - there may be smaller ones.
Other terms include the following (and these too may not be the next terms):
48174957112005843444270083236899591347874 = 2^7 + 1259^7 + 648383^7.
343628633008268493930426179988576850614546787655 = 5^7 + 97^7 + 6178313^7.
1556588247952374145751498792380776025975963817566087335 = 5^7 + 941^7 + 55174589^7.
6777869034345885139001456808449377853222864558972446987604 = 2^7 + 337^7 + 182635307^7.
8652931112104420195217156139788964690213217995925746635175635 = 5^7 + 29^7 + 507351601^7.
33684756195335243623428442147352712728560450053586233129585039130540009686445977 = 3^7 + 2731^7 + 229647602339^7.
4218418507660286246537768294375414778864666339784229288571328866079146694717894140 = 5^7 + 7^7 + 2677^7 + 457863123059^7.
(End)

Examples

			275223438741 is not a seventh power, i.e., not a term of A001015, but is equal to the product of prime numbers 3 * 23 * 43 * 92761523, and 3^7 + 23^7 + 43^7 = 275223438741, so 275223438741 is a term of the sequence.
		

References

  • J. M. De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, page 362, ISBN 978-0-8218-4807-4.

Crossrefs

Extensions

Edited by Robert Israel, Nov 02 2016

A291828 Numbers k such that k^2 is sum of two positive 7th powers.

Original entry on oeis.org

16, 2048, 34992, 262144, 1250000, 4478976, 13176688, 33554432, 76527504, 160000000, 276922881, 311794736, 573308928, 1003976272, 1686616064, 2733750000, 4294967296, 6565418768, 9795520512, 14301947824, 20480000000, 28817416656, 35446128768, 39909726208
Offset: 1

Views

Author

XU Pingya, Sep 03 2017

Keywords

Comments

When a^7 + b^7 = m, (ma)^7 + (mb)^7 = m^8 is square.
When k in this sequence, k*(n^7) (n = 2, 3, ... ) is also in this sequence.

Examples

			16^2 = 2^8 = 2^7 + 2^7, so 16 is in the sequence.
276922881^2 = 129^7 + 358^7, so 276922881 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[IntegerQ[(n^2-a^7)^(1/7)],AppendTo[lst,n]],{n,4*10^10},{a,(n^2/2)^(1/7)}]; lst

A343617 Decimal expansion of P_{3,2}(7) = Sum 1/p^7 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 7, 8, 2, 5, 3, 5, 4, 1, 1, 3, 0, 5, 0, 4, 9, 2, 8, 7, 4, 2, 5, 1, 7, 0, 1, 6, 7, 0, 7, 5, 5, 9, 2, 0, 6, 0, 3, 3, 0, 7, 9, 3, 0, 9, 7, 5, 1, 3, 2, 4, 4, 3, 3, 1, 4, 6, 8, 0, 4, 8, 8, 3, 3, 9, 4, 0, 3, 5, 4, 3, 7, 0, 6, 3, 8, 0, 9, 2, 1, 8, 4, 3, 5, 7, 0, 1, 1, 0, 5, 8, 6, 5, 3, 8, 3, 8, 6, 4, 5, 6, 2, 9, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0078253541130504928742517016707559206033079309751324433146804883394...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001015 (n^7), A085967 (PrimeZeta(7)).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343627 (for primes 3k+1), A086037 (for primes 4k+1), A085996 (for primes 4k+3).

Programs

  • PARI
    A343617_upto(N=100)={localprec(N+5); digits((PrimeZeta32(7)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(7) = Sum_{p in A003627} 1/p^7 = P(7) - 1/3^7 - P_{3,1}(7).

A017575 a(n) = (12n+4)^7.

Original entry on oeis.org

16384, 268435456, 13492928512, 163840000000, 1028071702528, 4398046511104, 14645194571776, 40867559636992, 100000000000000, 221068140740608, 450766669594624, 860542568759296, 1555363874947072, 2684354560000000, 4453476124377088, 7140436495826944, 11112006825558016
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (12*n + 4)^7; Array[a, 20, 0] (* Amiram Eldar, Jul 14 2024 *)

Formula

From Amiram Eldar, Jul 14 2024: (Start)
a(n) = A001015(A017569(n)) = A017569(n)^7.
a(n) = 16384 * A016783(n).
Sum_{n>=0} 1/a(n) = 7*Pi^7/(403107840*sqrt(3)) + 1093*zeta(7)/35831808. (End)

Extensions

More terms from Amiram Eldar, Jul 14 2024

A070726 a(n) = n^7 mod 46.

Original entry on oeis.org

0, 1, 36, 25, 8, 17, 26, 5, 12, 27, 14, 7, 16, 9, 42, 11, 18, 43, 6, 15, 44, 33, 22, 23, 24, 13, 2, 31, 40, 3, 28, 35, 4, 37, 30, 39, 32, 19, 34, 41, 20, 29, 38, 21, 10, 45, 0, 1, 36, 25, 8, 17, 26, 5, 12, 27, 14, 7, 16, 9, 42, 11, 18, 43, 6, 15, 44, 33, 22, 23, 24, 13, 2, 31, 40
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2002

Keywords

Crossrefs

CF. A001015 (n^7).

Programs

A094075 Denominator of I(n)=integral_{x=0 to 1/n}(x^2-1)^3 dx.

Original entry on oeis.org

105, 13440, 229635, 1720320, 8203125, 29393280, 86472015, 220200960, 502211745, 1050000000, 2046152955, 3762339840, 6588594285, 11068417920, 17940234375, 28185722880, 43085560665, 64283103360, 93856532595, 134400000000
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Apr 29 2004

Keywords

Comments

The numerator is b(n) = -105*n^6+105*n4-63*n^2+15. E.g., b(3) = -68392.

Examples

			I(3) = -68592/229635.
		

Programs

  • Mathematica
    f[n_] := Integrate[(x^2 - 1)^3, {x, 0, 1/n}]; Table[(-105n^6 + 105n^4 - 63n^2 + 15)/f[n], {n, 20}] (* Robert G. Wilson v, May 03 2004 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{105,13440,229635,1720320,8203125,29393280,86472015,220200960},20] (* Harvey P. Dale, Aug 04 2023 *)

Formula

a(n) = 105*n^7 = 105*A001015(n).
G.f.: 105*x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/(x-1)^8. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009

Extensions

More terms from Robert G. Wilson v, May 03 2004
G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009

A138586 a(1) = 1; a(n) = a(n-1) + (n!)^7.

Original entry on oeis.org

1, 129, 280065, 4586751489, 358322666751489, 100306488365546751489, 82606511560391889386751489, 173238283180457843219993066751489, 828593116199250458889895450218986751489
Offset: 1

Views

Author

Jonathan Vos Post, May 18 2008

Keywords

Comments

After a(1) = 1 these are all divisible by 3. a(n)/3 is prime (i.e. a(n) is semiprime) for n = 2, 4 (i.e. (1!)^7 + (2!)^7 + (3!)^7 + (4!)^7 = 4586751489 = 3 * 1528917163) and then when next?

Crossrefs

Formula

a(n) = Sum_{k=1..n} (k!)^7 = Sum_{k=1..n} A001015(A000142(n)).

A167166 a(n) = n^7 mod 16.

Original entry on oeis.org

0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0
Offset: 0

Views

Author

Zerinvary Lajos, Oct 29 2009

Keywords

Comments

Equivalently: n^(4*m+7) mod 16. - G. C. Greubel, Jun 04 2016

Programs

  • Mathematica
    Table[Mod[n^7, 16], {n, 0, 10}] (* G. C. Greubel, Jun 04 2016 *)
    PowerMod[Range[0,100],7,16] (* or *) PadRight[{},100,{0,1,0,11,0,13,0,7,0,9,0,3,0,5,0,15}] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    a(n)=n^7%16 \\ Charles R Greathouse IV, Apr 06 2016
  • Sage
    [power_mod(n,7,16)for n in range(0, 93)] #
    

Formula

From R. J. Mathar, Sep 30 2013: (Start)
a(n) = a(n-16).
G.f. -x*(1 +11*x^2 +13*x^4 +7*x^6 +9*x^8 +3*x^10 +5*x^12 +15*x^14) / ( (x-1)*(1+x)*(1+x^2)*(1+x^4)*(1+x^8) ). (End)
a(n) = A130909(A001015(n)). - Michel Marcus, Jun 04 2016
Previous Showing 71-80 of 87 results. Next