cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A306240 Number of ways to write n as x^9 + y^3 + z*(z+1) + w*(w+1), where x,y,z,w are nonnegative integers with x <= 2 and z <= w.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 1, 3, 5, 4, 3, 2, 1, 1, 2, 4, 4, 3, 3, 2, 2, 3, 4, 3, 2, 3, 4, 5, 6, 4, 2, 2, 2, 2, 3, 5, 5, 4, 4, 4, 4, 2, 1, 3, 4, 5, 5, 3, 2, 2, 2, 3, 4, 4, 5, 4, 2, 4, 6, 5, 2, 2, 3, 4, 6, 6, 4, 4, 5, 3, 3, 6, 6, 4, 3, 3, 3, 3, 3, 5, 7, 6, 5, 3, 3, 4, 3, 5, 6, 4, 3, 4, 4, 3, 5, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Jan 31 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 11, 17, 18, 47, 108, 109, 234, 359. Also, any nonnegative integer can be written as x^6 + y^3 + z*(z+1) + w*(w+1), where x,y,z,w are nonnegative integers with x <= 2.
We have verified a(n) > 0 for all n = 0..2*10^7.

Examples

			a(11) = 1 with 11 = 1^9 + 2^3 + 0*1 + 1*2.
a(18) = 1 with 18 = 0^9 + 0^3 + 2*3 + 3*4.
a(109) = 1 with 109 = 1^9 + 4^3 + 1*2 + 6*7.
a(234) = 1 with 234 = 0^9 + 6^3 + 2*3 + 3*4.
a(359) = 1 with 359 = 1^9 + 2^3 + 10*11 + 15*16.
a(1978) = 3 with 1978 = 2^9 + 2^3 + 26*27 + 27*28 = 2^9 + 6^3 + 19*20 + 29*30 = 2^9 + 6^3 + 24*25 + 25*26.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[4n+1]];
    tab={};Do[r=0;Do[If[TQ[n-x^9-y^3-z(z+1)],r=r+1],{x,0,Min[2,n^(1/9)]},{y,0,(n-x^9)^(1/3)},{z,0,(Sqrt[2(n-x^9-y^3)+1]-1)/2}];tab=Append[tab,r],{n,0,100}];Print[tab]

A344336 Number of divisors of n^9.

Original entry on oeis.org

1, 10, 10, 19, 10, 100, 10, 28, 19, 100, 10, 190, 10, 100, 100, 37, 10, 190, 10, 190, 100, 100, 10, 280, 19, 100, 28, 190, 10, 1000, 10, 46, 100, 100, 100, 361, 10, 100, 100, 280, 10, 1000, 10, 190, 190, 100, 10, 370, 19, 190, 100, 190, 10, 280, 100, 280, 100, 100, 10, 1900, 10, 100
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=9 of A343656.
Cf. A000005, A001017, A344337 (9^omega(n)).

Programs

  • Mathematica
    Table[DivisorSigma[0, n^9], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^9);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 9*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 9^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 9^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 8*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A001017(n)).
Multiplicative with a(p^e) = 9*e+1.
a(n) = Sum_{d|n} 9^omega(d).
G.f.: Sum_{k>=1} 9^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 8/p^s). - Vaclav Kotesovec, Aug 19 2021

A004886 Numbers that are the sum of at most 2 positive 9th powers.

Original entry on oeis.org

0, 1, 2, 512, 513, 1024, 19683, 19684, 20195, 39366, 262144, 262145, 262656, 281827, 524288, 1953125, 1953126, 1953637, 1972808, 2215269, 3906250, 10077696, 10077697, 10078208, 10097379, 10339840, 12030821, 20155392, 40353607, 40353608
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001017 (9th powers), A003391 (sum of 2).

Programs

  • PARI
    lista(nn) = setbinop((x,y)->x^9+y^9, [0..nn]); \\ Michel Marcus, Jul 02 2025
  • Python
    def A004886_upto(n):
      a=set()
      for i in range(n):
        if 2*(i**9)>n: break
        for j in range(i,n):
          if i**9+j**9<=n: a.add(i**9+j**9)
          else: break
      return sorted(a) # Zhuorui He, Jun 30 2025
    

A016773 a(n) = (3*n)^9.

Original entry on oeis.org

0, 19683, 10077696, 387420489, 5159780352, 38443359375, 198359290368, 794280046581, 2641807540224, 7625597484987, 19683000000000, 46411484401953, 101559956668416, 208728361158759, 406671383849472
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001017 (n^9).

Programs

A016917 a(n) = (6*n)^9.

Original entry on oeis.org

0, 10077696, 5159780352, 198359290368, 2641807540224, 19683000000000, 101559956668416, 406671383849472, 1352605460594688, 3904305912313344, 10077696000000000, 23762680013799936, 51998697814228992
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A016989 a(n) = (7*n)^9.

Original entry on oeis.org

0, 40353607, 20661046784, 794280046581, 10578455953408, 78815638671875, 406671383849472, 1628413597910449, 5416169448144896, 15633814156853823, 40353607000000000, 95151694449171437, 208215748530929664
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001017.

Programs

Formula

From Wesley Ivan Hurt, May 26 2024: (Start)
a(n) = 40353607 * A001017(n).
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).
G.f.: 40353607*x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(x - 1)^10. (End)

A017313 a(n) = (10*n + 3)^9.

Original entry on oeis.org

19683, 10604499373, 1801152661463, 46411484401953, 502592611936843, 3299763591802133, 15633814156853823, 58871586708267913, 186940255267540403, 520411082988487293, 1304773183829244583, 3004041937984268273
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001017 (n^9), A017305 (10n+3).

Programs

  • Magma
    [(10*n+3)^9: n in [0..15]]; // Vincenzo Librandi, Jul 31 2011
    
  • Mathematica
    (10*Range[0,20]+3)^9 (* or *) LinearRecurrence[ {10,-45,120,-210,252,-210,120,-45,10,-1},{19683,10604499373,1801152661463,46411484401953,502592611936843,3299763591802133,15633814156853823,58871586708267913,186940255267540403,520411082988487293},30] (* Harvey P. Dale, Sep 14 2013 *)
  • Python
    for n in range(0, 15): print((10*n + 3)**9, end=", ") # Stefano Spezia, Oct 20 2018

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10); a(0)=19683, a(1)=10604499373, a(2)=1801152661463, a(3)=46411484401953, a(4)=502592611936843, a(5)=3299763591802133, a(6)=15633814156853823, a(7)=58871586708267913, a(8)=186940255267540403, a(9)=520411082988487293. - Harvey P. Dale, Sep 14 2013

A017361 a(n) = (10*n + 7)^9.

Original entry on oeis.org

40353607, 118587876497, 7625597484987, 129961739795077, 1119130473102767, 6351461955384057, 27206534396294947, 95151694449171437, 285544154243029527, 760231058654565217, 1838459212420154507, 4108400332687853397
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017353 (10n+7), A001017 (n^9).

Programs

  • Magma
    [(10*n+7)^9: n in [0..20]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    (10*Range[0,30]+7)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{40353607,118587876497,7625597484987,129961739795077,1119130473102767,6351461955384057,27206534396294947,95151694449171437,285544154243029527,760231058654565217},30] (* Harvey P. Dale, Dec 28 2011 *)
  • PARI
    vector(20, n, n--; (10*n+7)^9) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10); a(0)=40353607, a(1)=118587876497, a(2)=7625597484987, a(3)=129961739795077, a(4)=1119130473102767, a(5)=6351461955384057, a(6)=27206534396294947, a(7)=95151694449171437, a(8)=285544154243029527, a(9)=760231058654565217. - Harvey P. Dale, Dec 28 2011

A050756 Ninth powers containing no pair of consecutive equal digits.

Original entry on oeis.org

0, 1, 512, 19683, 1953125, 40353607, 387420489, 2357947691, 5159780352, 68719476736, 198359290368, 3814697265625, 5429503678976, 14507145975869, 165216101262848, 327381934393961, 618121839509504, 18014398509481984
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,90]^9,FreeQ[Differences[IntegerDigits[#]],0]&] (* Harvey P. Dale, Dec 27 2011 *)

A017577 a(n) = (12n+4)^9.

Original entry on oeis.org

262144, 68719476736, 10578455953408, 262144000000000, 2779905883635712, 18014398509481984, 84590643846578176, 316478381828866048, 1000000000000000000, 2773078757450186752, 6930988311686938624, 15916595351771938816, 34068690316840665088, 68719476736000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (12*Range[0,30]+4)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{262144,68719476736,10578455953408,262144000000000,2779905883635712,18014398509481984,84590643846578176,316478381828866048,1000000000000000000,2773078757450186752},40] (* Harvey P. Dale, Sep 07 2018 *)

Formula

From Amiram Eldar, Jul 14 2024: (Start)
a(n) = A001017(A017569(n)) = A017569(n)^9.
a(n) = 262144 * A016785(n).
Sum_{n>=0} 1/a(n) = 809*Pi^9/(7313988648960*sqrt(3)) + 9841*zeta(9)/5159780352. (End)

Extensions

More terms from Amiram Eldar, Jul 14 2024
Previous Showing 41-50 of 50 results.