cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 133 results. Next

A365607 Number of degree 3 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 40, 328, 2536, 19912, 158056, 1260616, 10073320, 80551624, 644308072, 5154149704, 41232252904, 329855188936, 2638833008488, 21110638558792, 168885031942888, 1351080025960648, 10808639518937704, 86469114085259080, 691752906483344872, 5534023233270575560, 44272185810376054120
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,40,328},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365607(n): return ((3<<3*n)+(3**(n-1)<<4))//5-8 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/5)*8^n + (16/15)*3^n - 8.
a(n) = 8*a(n-1) - 16*3^(n-2) + 56.
a(n) = 8^n - A365606(n) - A365608(n).
3*a(n) = 2*A271939(n) - 2*A365606(n) - 4*A365608(n).
G.f.: 8*x^2*(5 - 19*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A365608 Number of degree 4 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 4, 100, 1060, 9316, 77092, 624484, 5019172, 40223332, 321996580, 2576602468, 20614709284, 164923342948, 1319403749668, 10555281015652, 84442401180196, 675539668606564, 5404318726347556, 43234553943265636, 345876443943580708, 2767011588741012580, 22136092821505201444, 177088742906772914020
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,4,100},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365608(n): return ((3<<3*n-1)-(3**(n-1)<<5))//5+4 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/10)*8^n - (32/15)*3^n + 4.
a(n) = 8*a(n-1) + 32*3^(n-2) - 28.
a(n) = 8^n - A365606(n) - A365607(n).
4*a(n) = 2*A271939(n) - 2*A365606(n) - 3*A365607(n).
G.f.: 4*x^2*(1 + 13*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A049306 Numbers k such that k is a substring of 8^k.

Original entry on oeis.org

4, 6, 7, 10, 13, 17, 18, 28, 31, 33, 36, 38, 42, 44, 47, 48, 49, 52, 54, 56, 58, 60, 63, 64, 67, 68, 69, 76, 77, 79, 81, 82, 83, 85, 86, 89, 90, 91, 94, 97, 112, 115, 124, 130, 135, 165, 173, 176, 178, 189, 193, 195, 206, 208, 215, 221, 225, 249, 251, 252, 253, 256
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[300],SequenceCount[IntegerDigits[8^#],IntegerDigits[#]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 16 2018 *)
  • Python
    def ok(n): return str(n) in str(8**n)
    print(list(filter(ok, range(257)))) # Michael S. Branicky, Aug 13 2021

A128967 a(n) = (n^3-n)*8^n.

Original entry on oeis.org

0, 384, 12288, 245760, 3932160, 55050240, 704643072, 8455716864, 96636764160, 1063004405760, 11338713661440, 117922622078976, 1200666697531392, 12006666975313920, 118219490218475520, 1148417904979476480, 11024811887802974208, 104735712934128254976
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 - n)*8^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    LinearRecurrence[{32, -384, 2048, -4096}, {0, 384, 12288, 245760}, 30] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 384x^2/(1-8x)^4.
a(n) = 384*A140802(n-2). (End)
a(n) = 32*a(n-1) - 384*a(n-2) + 2048*a(n-3) - 4096*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A001018(n).
Sum_{n>=2} 1/a(n) = (49/16)*log(8/7) - 13/32.
Sum_{n>=2} (-1)^n/a(n) = (81/16)*log(9/8) - 19/32. (End)

Extensions

Corrected the offset. - Mohammad K. Azarian, Nov 20 2008

A183819 T(n,k)=1/81 the number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock being a reflection across the shared element pair of any horizontal or vertical neighbor.

Original entry on oeis.org

1, 8, 8, 64, 162, 64, 512, 3256, 3256, 512, 4096, 65640, 163208, 65640, 4096, 32768, 1321860, 8231592, 8231592, 1321860, 32768, 262144, 26630220, 414246824, 1042063656, 414246824, 26630220, 262144, 2097152, 536415300, 20864057480
Offset: 1

Views

Author

R. H. Hardin Jan 07 2011

Keywords

Comments

Table starts
.........1.............8...............64................512
.........8...........162.............3256..............65640
........64..........3256...........163208............8231592
.......512.........65640..........8231592.........1042063656
......4096.......1321860........414246824.......131467169720
.....32768......26630220......20864057480.....16607782066704
....262144.....536415300....1050517114472...2096961683069192
...2097152...10805642100...52900274426120.264820293988996048
..16777216..217666494900.2663752907479720
.134217728.4384657426500

Examples

			Some solutions with upper left block zero for 4X3
..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..1....0..0..1
..0..0..2....0..0..0....0..0..2....0..0..1....0..0..1....0..0..0....0..0..1
..1..0..1....0..2..1....1..2..0....1..1..0....2..1..1....2..1..0....1..1..2
..2..1..1....1..2..2....1..1..0....0..1..1....0..2..0....0..2..2....2..0..2
		

Crossrefs

Column 1 is A001018(n-1)

A212702 Main transitions in systems of n particles with spin 7/2.

Original entry on oeis.org

7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=8 (see formula), corresponding to spin S=(b-1)/2=7/2.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212701, A212703, A212704 (b = 2, 3, 4, 5, 6, 7, 9, 10).

Programs

  • Mathematica
    LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
    
  • PARI
    Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=8.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 16*a(n-1) - 64*a(n-2) for n > 2.
G.f.: 7*x/(8*x-1)^2. (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 7*x*exp(8*x).
a(n) = 7*A053539(n) = A008589(n)*A001018(n-1). (End)

A233168 T(n,k)=Number of nXk 0..7 arrays with no element x(i,j) adjacent to itself or value 7-x(i,j) horizontally, diagonally, antidiagonally or vertically, top left element zero, and 1 appearing before 2 3 4 5 and 6, 2 appearing before 3 4 and 5, and 3 appearing before 4 in row major order (unlabeled 8-colorings with no clashing color pairs).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 11, 8, 8, 11, 48, 64, 96, 64, 48, 236, 512, 1280, 1280, 512, 236, 1248, 4096, 18432, 28672, 18432, 4096, 1248, 6896, 32768, 278528, 720896, 720896, 278528, 32768, 6896, 39168, 262144, 4325376, 19922944, 31457280, 19922944, 4325376
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Table starts
......1........1...........3.............11................48
......1........1...........8.............64...............512
......3........8..........96...........1280.............18432
.....11.......64........1280..........28672............720896
.....48......512.......18432.........720896..........31457280
....236.....4096......278528.......19922944........1543503872
...1248....32768.....4325376......587202560.......83751862272
...6896...262144....68157440....17985175552.....4879082848256
..39168..2097152..1082130432...562640715776...296868139499520
.226496.16777216.17246978048.17798344474624.18506979718725632

Examples

			Some solutions for n=4 k=4
..0..1..2..3....0..1..7..1....0..1..7..6....0..1..7..2....0..1..0..6
..2..4..0..1....2..3..5..3....2..3..5..4....3..2..3..1....2..3..2..4
..7..6..5..3....7..6..0..6....6..0..1..0....7..1..7..5....0..1..0..6
..2..4..0..6....3..2..3..5....4..2..3..5....4..5..4..6....3..5..3..2
		

Crossrefs

Column 2 is A001018(n-2)

Formula

Empirical for column k:
k=1: a(n) = 12*a(n-1) -44*a(n-2) +48*a(n-3) for n>4
k=2: a(n) = 8*a(n-1) for n>2
k=3: a(n) = 24*a(n-1) -128*a(n-2) for n>3
k=4: a(n) = 48*a(n-1) -512*a(n-2) for n>3
k=5: a(n) = 96*a(n-1) -2048*a(n-2) for n>3
k=6: a(n) = 192*a(n-1) -8192*a(n-2) for n>3
k=7: a(n) = 384*a(n-1) -32768*a(n-2) for n>3

A299989 Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0.

Original entry on oeis.org

0, 1, 0, 3, 4, 1, 0, 9, 24, 22, 8, 1, 0, 27, 108, 171, 136, 57, 12, 1, 0, 81, 432, 972, 1200, 886, 400, 108, 16, 1, 0, 243, 1620, 4725, 7920, 8430, 5944, 2810, 880, 175, 20, 1, 0, 729, 5832, 20898, 44280, 61695, 59472, 40636, 19824, 6855, 1640, 258, 24, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots.
Row sums gives A001018.

Examples

			The triangle T(n, k) begins:
n\k 0     1      2      3       4       5       6      7        8       9
0:  0     1
1:  0     3      4      1
2:  0     9     24     22       8       1
3:  0    27    108    171     136      57      12       1
4:  0    81    432    972    1200     886     400     108      16       1
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.

Crossrefs

Row 2: row 5 of A158454.
Row 3: row 2 of A220665.
Row 4: row 5 of A219234.

Programs

  • Mathematica
    row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
  • Maxima
    g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$
    a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$
    T : []$
    for i:1 thru 11 do
      T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$
    T;
    
  • PARI
    T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k);
    tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 03 2018

Formula

T(n,k) = coefficients of x*(x^2 + 4*x + 3)^n.
T(n,k) = T(n-1,k-2) + 4*T(n-1,k-1) + 3*T(n-1,k), with T(n,0) = 0, T(n,1) = 3^n and T(n,2) = 4*n*3^(n-1).
T(n,n+k+1) = A152842(2*n,n+k) and T(n,n-k) = A152842(2*n,n+k+1), for n >= k >= 0.
T(n,1) = A000244(n).
T(n,2) = A120908(n).
T(n,n+1) = A069835(n).
T(n,2*n-1) = A139272(n).
T(n,2*n) = A008586(n).
T(n,2*n-2) = A140138(4*n) = A185872(2n,2) for n >= 1.
G.f.: x/(1 - y*(x^2 + 4*x + 3)).

Extensions

Typo in row 6 corrected by Jean-François Alcover, Mar 16 2018

A067412 Fourth column of triangle A067410.

Original entry on oeis.org

1, 5, 40, 320, 2560, 20480, 163840, 1310720, 10485760, 83886080, 671088640, 5368709120, 42949672960, 343597383680, 2748779069440, 21990232555520, 175921860444160, 1407374883553280, 11258999068426240
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

The fifth column gives [1,6,60,600,6000,60000,...].
a(n+1) = A157176(A016957(n)). [From Reinhard Zumkeller, Feb 24 2009]

Crossrefs

Cf. A067411 (third column), A067413 (sixth column), A001018 (powers of 8).

Programs

  • Mathematica
    Join[{1},NestList[8#&,5,20]] (* or *) CoefficientList[Series[ (1-3x)/ (1-8x),{x,0,20}],x] (* Harvey P. Dale, May 14 2011 *)

Formula

a(n)= A067410(n+3, 3). a(n)= 5*8^(n-1), n>=1, a(0)=1.
G.f.: (1-3*x)/(1-8*x).
E.g.f.: (5*exp(8*x)+3)/8 = exp(4*x)*(cosh(4*x)+sinh(4*x)/4) - Paul Barry, Nov 20 2003

A105317 Powers of Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 13, 16, 21, 25, 27, 32, 34, 55, 64, 81, 89, 125, 128, 144, 169, 233, 243, 256, 377, 441, 512, 610, 625, 729, 987, 1024, 1156, 1597, 2048, 2187, 2197, 2584, 3025, 3125, 4096, 4181, 6561, 6765, 7921, 8192, 9261, 10946, 15625, 16384, 17711
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2005

Keywords

Comments

The subset of nontrivial Fibonacci powers [numbers A000045(k)^n which are not in A000045] starts 4, 9, 16, 25, 27, 32, 64, 81, 125, 128, 169, 243, 256, 441, 512, 625, 729, 1024, 1156... - R. J. Mathar, Jan 26 2015. These are the initial terms of A254719. - Reinhard Zumkeller, Feb 06 2015

Examples

			2197 = 13^3 = A000045(7)^3, therefore 2197 is a term.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a105317 n = a105317_list !! (n-1)
    a105317_list = 0 : 1 : h 1 (drop 4 a000045_list) (singleton (2, 2)) where
      h y xs'@(x:xs) s
        | x < ff    = h y xs (insert (x, x) s)
        | ff == y   = h y xs' s'
        | otherwise = ff : h ff xs' (insert (f * ff, f) s')
        where ((ff, f), s') = deleteFindMin s
    -- Reinhard Zumkeller, Feb 06 2015
    
  • Maple
    N:= 10^6: # to get all terms <= N
    select(`<=`,{0,1,seq(seq(combinat:-fibonacci(i)^j, i = 3 ..floor(log[phi](sqrt(5)*N^(1/j)+1))),j=1..ilog2(N))},N);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Jan 26 2015
  • Mathematica
    lim = 10^5; t = Table[f = Fibonacci[n]; f^Range[Floor[Log[lim]/Log[f]]], {n, 3, Ceiling[Log[GoldenRatio, lim] + 1]}]; Union[{0, 1}, Flatten[t]] (* T. D. Noe, Sep 27 2011 *)
  • PARI
    list(lim)=my(v=List([0]),k=1,f,t); while(k<=lim, listput(v,k); k*=2); k=3; while(k<=lim, listput(v,k); k*=3); k=5; while(k<=lim, listput(v,k); k*=5); k=6; while((f=fibonacci(k++))<=lim, t=1; while((t*=f)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Oct 03 2016
Previous Showing 31-40 of 133 results. Next