cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A016957 a(n) = 6*n + 4.

Original entry on oeis.org

4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328
Offset: 0

Views

Author

Keywords

Comments

Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1) + 2*m*(n-1) - 2 for m > 1 and n > 1. - Sergey Kitaev, Nov 12 2004
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
4th transversal numbers (or 4-transversal numbers): Numbers of the 4th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 4th column in the square array A057145. - Omar E. Pol, May 02 2008
a(n) is the maximum number such that there exists an edge coloring of the complete graph with a(n) vertices using n colors and every subgraph whose edges are of the same color (subgraph induced by edge color) is planar. - Srikanth K S, Dec 18 2010
Also numbers having two antecedents in the Collatz problem: 12*n+8 and 2*n+1 (respectively A017617(n) and A005408(n)). - Michel Lagneau, Dec 28 2012
a(n) = 6n+4 has three undirected edges e1 = (3n+2, 6n+4), e2 = (6n+4, 12n+8) and e3 = (2n+1, 6n+4) in the Collatz graph of A006370. - Heinz Ebert, Mar 16 2021
Conjecture: this sequence contains some but not all, even numbers with odd abundance A088827. They appear in this sequence at indices A186424(n) - 1. - John Tyler Rascoe, Jul 09 2022

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A016789(n)*2. - Omar E. Pol, May 02 2008
A157176(a(n)) = A067412(n+1). - Reinhard Zumkeller, Feb 24 2009
a(n) = sqrt(A016958(n)). - Zerinvary Lajos, Jun 30 2009
a(n) = 2*(6*n+1) - a(n-1) (with a(0)=4). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((sqrt(36*n^2 - 36*n + 1) + 6*n + 1)/2). - Srikanth K S, Dec 18 2010
From Colin Barker, Jan 30 2012: (Start)
G.f.: 2*(2+x)/(1-2*x+x^2).
a(n) = 2*a(n-1) - a(n-2). (End)
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
a(n) = 3 * A005408(n) + 1. - Fred Daniel Kline, Oct 24 2015
a(n) = A057145(n+2,4). - R. J. Mathar, Jul 28 2016
a(4*n+2) = 4 * a(n). - Zhandos Mambetaliyev, Sep 22 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 - log(2)/6. - Amiram Eldar, Dec 10 2021
E.g.f.: 2*exp(x)*(2 + 3*x). - Stefano Spezia, May 29 2024

A067411 Third column of triangle A067410 and second column of A067417.

Original entry on oeis.org

1, 4, 24, 144, 864, 5184, 31104, 186624, 1119744, 6718464, 40310784, 241864704, 1451188224, 8707129344, 52242776064, 313456656384, 1880739938304, 11284439629824, 67706637778944, 406239826673664
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

Let f(k) be the sum of the smallest three positive divisors of k, g(k) be the sum of the largest two positive divisors of k, this sequence from a(2) onwards contains the numbers k for which g(k) is a positive integer power of f(k). - Yifan Xie, Jan 27 2024

Crossrefs

A002001, A067412 (second and fourth column of A067410), A000244, A067403 (first and third column of A067417), A000400 (powers of 6).
Row sums of A038195.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x)/(1-6x),{x,0,30}],x] (* Harvey P. Dale, Feb 26 2015 *)
  • PARI
    a(n) = if(n<=0, 0, 4*6^(n-1) ); \\ Joerg Arndt, Feb 23 2014

Formula

a(n) = A067410(n+2, 2) = A067417(n+1, 1).
a(n) = 4 * 6^(n-1), for n >= 1, a(0)=1.
G.f.: (1-2*x)/(1-6*x).
E.g.f.: (2*exp(6*x)+1) / 3 = exp(3*x)*(cosh(3*x) + sinh(3*x)/3). - Paul Barry, Nov 20 2003
a(n) = Sum_{k=0..n} C(n,k) * A001045(n+k+1). - Paul Barry, Apr 19 2010

Extensions

Incorrect formula deleted by Harvey P. Dale, Feb 26 2015
Formula restored by Sean A. Irvine, Jan 10 2021

A067410 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 12, 4, 1, 16, 48, 24, 5, 1, 32, 192, 144, 40, 6, 1, 64, 768, 864, 320, 60, 7, 1, 128, 3072, 5184, 2560, 600, 84, 8, 1, 256, 12288, 31104, 20480, 6000, 1008, 112, 9, 1, 512, 49152, 186624, 163840, 60000, 12096, 1568, 144, 10, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Examples

			Triangle starts:
  1;
  2,  1;
  4,  3, 1;
  8, 12, 4, 1;
  ...
		

Crossrefs

Cf. A009998 (triangle built from powers of (m+1)), A067402.

Programs

  • Mathematica
    A[n_,m_]:=If[n==m,1,(m+2)(2(m+1))^(n-m-1)]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)

Formula

a(n, m) = 1 if n = m; a(n, m) = (m+2)*(2*(m+1))^(n-m-1) if n > m >= 0.
G.f. for column m: (x^m)*(1-m*x)/(1-2*(m+1)*x).

A157176 a(n+1) = a(n - n mod 2) + a(n - n mod 3), a(0) = 1.

Original entry on oeis.org

1, 2, 2, 3, 5, 8, 8, 16, 16, 24, 40, 64, 64, 128, 128, 192, 320, 512, 512, 1024, 1024, 1536, 2560, 4096, 4096, 8192, 8192, 12288, 20480, 32768, 32768, 65536, 65536, 98304, 163840, 262144, 262144, 524288, 524288, 786432, 1310720, 2097152, 2097152, 4194304, 4194304
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 24 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,8},{1, 2, 2, 3, 5, 8},45] (* Stefano Spezia, May 29 2024 *)

Formula

a(n+6) = 8*a(n).
a(6*k) = 8^k; a(A008588(n))=A001018(n);
a(6*k+1) = a(6*k+2) = 2*8^k; a(A016921(n))=a(A016933(n))=A013730(n);
a(6*k+3) = 3*8^k; a(A016945(n))=A103333(n+1);
a(6*k+4) = 5*8^k; a(A016957(n))=A067412(n+1);
a(6*k+5) = 8^(k+1); a(A016969(n))=A001018(n+1).
G.f.: (1 + 2*x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5)/((1 - 2*x^2)*(1 + 2*x^2 + 4*x^4)). - Stefano Spezia, May 29 2024

Extensions

a(43)-a(44) from Stefano Spezia, May 29 2024

A067425 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 4, 1, 16, 5, 1, 64, 40, 6, 1, 256, 320, 72, 7, 1, 1024, 2560, 864, 112, 8, 1, 4096, 20480, 10368, 1792, 160, 9, 1, 16384, 163840, 124416, 28672, 3200, 216, 10, 1, 65536, 1310720, 1492992, 458752, 64000
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

The fifth column (m=4) gives [1, 8, 160, 3200, 64000, 1280000, 25600000, ...].

Examples

			Triangle starts:
   1;
   4,  1;
  16,  5,  1;
  64, 40,  6,  1;
  ...
		

Crossrefs

Columns 0..3 are A000302 (powers of 4), A067412, A067419, A067404.
Columns 5..8 are A067426, A067427, A067428, A067429.

Programs

  • Mathematica
    A067425[n_, m_] := If[n == m, 1, (m + 4)*(4*(m + 1))^(n - m - 1)];
    Table[A067425[n, m], {n, 0, 10}, {m, 0, n}] (* Paolo Xausa, Oct 16 2024 *)

Formula

T(n,m) = 1 if n = m; T(n,m) = (m+4)*(4*(m+1))^(n-m-1) if n > m >= 0, else 0.
G.f. for column m: (x^m)*(1-3*m*x)/(1-4*(m+1)*x).

A164737 a(n) = 8*a(n-2) for n > 2; a(1) = 5, a(2) = 12.

Original entry on oeis.org

5, 12, 40, 96, 320, 768, 2560, 6144, 20480, 49152, 163840, 393216, 1310720, 3145728, 10485760, 25165824, 83886080, 201326592, 671088640, 1610612736, 5368709120, 12884901888, 42949672960, 103079215104, 343597383680, 824633720832
Offset: 1

Views

Author

Klaus Brockhaus, Aug 24 2009

Keywords

Comments

Interleaving of 5*A001018 and 12*A001018.
Binomial transform is A096980 without initial terms 1. Second binomial transform is A164593. Third binomial transform is A101386.

Crossrefs

Cf. A001018 (powers of 8), A067412, A096980, A101386, A164593.

Programs

  • Magma
    [ n le 2 select 7*n-2 else 8*Self(n-2): n in [1..26] ];
    
  • Maple
    seq(coeff(series( x*(5+12*x)/(1-8*x^2) , x, n+1), x, n), n=1..30); # G. C. Greubel, Apr 16 2020
  • Mathematica
    LinearRecurrence[{0,8}, {5,12}, 30] (* G. C. Greubel, Apr 16 2020 *)
  • Sage
    [(13 -7*(-1)^n)*2^((6*n -11 +3*(-1)^n)/4) for n in (1..30)] # G. C. Greubel, Apr 16 2020

Formula

a(n) = (13 - 7*(-1)^n)*2^(1/4*(6*n - 11 + 3*(-1)^n)).
G.f.: x*(5 + 12*x)/(1 - 8*x^2).

A067413 Sixth column of triangle A067410.

Original entry on oeis.org

1, 7, 84, 1008, 12096, 145152, 1741824, 20901888, 250822656, 3009871872, 36118462464, 433421549568, 5201058594816, 62412703137792, 748952437653504, 8987429251842048, 107849151022104576, 1294189812265254912
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

The fifth column is [1,6,60,600,6000,60000,...].

Crossrefs

Cf. A067412 (fourth column), A067414 (seventh column), A001021 (powers of 12).

Formula

a(n)= A067410(n+5, 5). a(n)= 7*12^(n-1), n>=1, a(0)=1.
G.f.: (1-5*x)/(1-12*x).
Showing 1-7 of 7 results.