cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 92 results. Next

A272269 Numbers n such that 11^n does not contain all ten decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 28, 34, 38, 41
Offset: 1

Views

Author

Altug Alkan, Apr 24 2016

Keywords

Comments

Inspiration was the simple form of 11 that is concatenation of 1 and 1. With similar motivation, A130696 focuses on the values of 2^n = (1 + 1)^n. Since this sequence exists in base 10, 11^n*10 is simply concatenation of 11^n and 0. So 11^(n+1) = concat(11^n, 0) + 11^n while 2^(n+1) = 2^n + 2^n.
A030706 is a subsequence. So note that if there is currently no proof of finiteness of A030706, then there is no proof yet of the finiteness of this sequence.

Examples

			25 is a term because 11^25 = 108347059433883722041830251 that does not contain digit 6.
26 is not a term because 11^26 = 11^25*10 + 11^25 = 1083470594338837220418302510 + 108347059433883722041830251 = 1191817653772720942460132761 that contains all ten decimal digits.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 120], AnyTrue[DigitCount[11^#], # == 0 &] &] (* Michael De Vlieger, Apr 24 2016, Version 10 *)
  • PARI
    isA171102(n) = 9<#vecsort(Vecsmall(Str(n)), , 8);
    lista(nn) = for(n=0, nn, if(!isA171102(11^n), print1(n, ", ")));
    
  • PARI
    select( is_A272269(n)=#Set(digits(11^n))<10 ,[0..100]) \\ M. F. Hasler, May 18 2017

A319074 a(n) is the sum of the first n nonnegative powers of the n-th prime.

Original entry on oeis.org

1, 4, 31, 400, 16105, 402234, 25646167, 943531280, 81870575521, 15025258332150, 846949229880161, 182859777940000980, 23127577557875340733, 1759175174860440565844, 262246703278703657363377, 74543635579202247026882160, 21930887362370823132822661921, 2279217547342466764922495586798
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2018

Keywords

Examples

			For n = 4 the 4th prime is 7 and the sum of the first four nonnegative powers of 7 is 7^0 + 7^1 + 7^2 + 7^3 = 1 + 7 + 49 + 343 = 400, so a(4) = 400.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, prime(n)^k); \\ Michel Marcus, Sep 13 2018

Formula

a(n) = Sum_{k=0..n-1} A000040(n)^k.
a(n) = Sum_{k=0..n-1} A319075(k,n).
a(n) = (A000040(n)^n - 1)/(A000040(n) - 1).
a(n) = (A062457(n) - 1)/A006093(n).
a(n) = A069459(n)/A006093(n).
a(n) = A000203(A000040(n)^(n-1)).
a(n) = A000203(A093360(n)).

A319076 Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

T(n,k) is also the sum of the divisors of the n-th nonnegative power of the k-th prime, n >= 0, k >= 1.

Examples

			The corner of the square array is as follows:
         A126646 A003462 A003463  A023000    A016123    A091030     A091045
A000012        1,      1,      1,       1,         1,         1,          1, ...
A008864        3,      4,      6,       8,        12,        14,         18, ...
A060800        7,     13,     31,      57,       133,       183,        307, ...
A131991       15,     40,    156,     400,      1464,      2380,       5220, ...
A131992       31,    121,    781,    2801,     16105,     30941,      88741, ...
A131993       63,    364,   3906,   19608,    177156,    402234,    1508598, ...
.......      127,   1093,  19531,  137257,   1948717,   5229043,   25646167, ...
.......      255,   3280,  97656,  960800,  21435888,  67977560,  435984840, ...
.......      511,   9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = sigma(prime(k)^n); \\ Michel Marcus, Sep 13 2018

Formula

T(n,k) = A000203(A000040(k)^n).
T(n,k) = Sum_{j=0..n} A000040(k)^j.
T(n,k) = Sum_{j=0..n} A319075(j,k).
T(n,k) = (A000040(k)^(n+1) - 1)/(A000040(k) - 1).
T(n,k) = (A000040(k)^(n+1) - 1)/A006093(k).

A338784 a(n) is the smallest number with exactly n divisors such that all its divisors end with the same digit (which is necessarily 1).

Original entry on oeis.org

1, 11, 121, 341, 14641, 3751, 1771561, 13981, 116281, 453871, 25937424601, 153791, 3138428376721, 54918391, 14070001, 852841, 45949729863572161, 4767521, 5559917313492231481, 18608711, 1702470121, 804060162631, 81402749386839761113321, 9381251, 13521270961, 97291279678351, 195468361
Offset: 1

Views

Author

Bernard Schott, Nov 09 2020

Keywords

Comments

As 1 is a divisor for each number, all the divisors must end with 1.

Examples

			121 is the smallest number whose 3 divisors (1, 11, 121) end with 1, hence a(3) = 121.
3751 is the smallest number whose 6 divisors (1, 11, 31, 121, 341, 3751) end with 1, hence a(6) = 121.
a(18) = 4767521 = 11^2 * 31^2 * 41 as it has 18 divisors all of which end in 1. - _David A. Corneth_, Nov 09 2020
		

Crossrefs

Subsequence of A004615.

Programs

  • PARI
    a(n) = {my(pr); if(n==1, return(1)); if(isprime(n), return(11^(n-1))); forstep(i = 1, oo, 10, f = factor(i); if(numdiv(f) == n, pr = 1; for(j = 1, #f~, if(f[j, 1]%10 != 1, pr = 0; next(2) ) ) ); if(pr, return(i)); ) } \\ David A. Corneth, Nov 09 2020

Formula

If n is prime p, then a(p) = 11^(p-1) = A001020(p-1).
For k>=1, a(2^k) = {Product_m=1..k} A030430(m) = A092609(k).

Extensions

Data corrected by David A. Corneth, Nov 09 2020

A339794 a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1).

Original entry on oeis.org

4, 9, 25, 18, 49, 80, 121, 169, 112, 135, 289, 361, 441, 352, 529, 416, 841, 360, 961, 891, 1088, 875, 1369, 1216, 1053, 1681, 672, 1849, 1472, 2209, 2601, 2809, 3025, 3249, 1856, 3481, 3721, 1984, 4225, 1584, 4489, 4761, 1960, 5041, 5329, 4736, 5929, 2496, 6241
Offset: 1

Views

Author

Michel Marcus, Dec 17 2020

Keywords

Comments

Equivalently, subsequence of terms of A339744 excluding terms whose prime factor set has already been encountered.
a(n) = A005117(n + 1)^2 when A005117(n + 1) is prime. Proof: if A005117(n + 1) is a prime p then rad(A005117(n + 1))^2 = rad(p)^2 = p^2 and so integers whose prime factors set is the same as the prime factors set of A005117(n + 1) = p are p^m where m >= 1. p^2 > sigma(p^1) = p + 1 but p^2 < sigma(p^2) = p^2 + p + 1. Q.E.D. - David A. Corneth, Dec 19 2020
From Bernard Schott, Jan 19 2021: (Start)
Indeed, a(n) satisfies the double inequality A005117(n+1) < a(n) <= A005117(n+1)^2.
It is also possible that a(n) = A005117(n+1)^2, even when A005117(n+1) is not prime; the smallest such example is for a(13) = 441 = 21^2 = A005117(14)^2. (End)

Examples

			   n  a(n) prime factor set
   1    4  [2]           A000079
   2    9  [3]           A000244
   3   25  [5]           A000351
   4   18  [2, 3]        A033845
   5   49  [7]           A000420
   6   80  [2, 5]        A033846
   7  121  [11]          A001020
   8  169  [13]          A001022
   9  112  [2, 7]        A033847
  10  135  [3, 5]        A033849
  11  289  [17]          A001026
  12  361  [19]          A001029
  13  441  [3, 7]        A033850
  14  352  [2, 11]       A033848
  15  529  [23]          A009967
  16  416  [2, 13]       A288162
  17  841  [29]          A009973
  18  360  [2, 3, 5]     A143207
		

Crossrefs

Cf. A000203 (sigma), A007947 (rad).
Cf. A005117 (squarefree numbers), A027748, A265668, A339744.
Subsequence: A001248 (squares of primes).

Programs

  • PARI
    u(n) = {my(fn=factor(n)[,1]); for (k = n, n^2, my(fk = factor(k)); if (fk[,1] == fn, if (factorback(fk[,1])^2 < sigma(fk), return (k));););}
    lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", ");););}

Formula

a(n) <= A005117(n+1)^2. - David A. Corneth, Dec 19 2020

A348553 Number of digits in 11^n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2021

Keywords

Examples

			a(24) = 25 because 11^24 = 9849732675807611094711841, which has 25 digits.
a(25) = 27 because 11^25 = 108347059433883722041830251, which has 27 digits.
		

Crossrefs

Number of digits in b^n: A034887 (b=2), A034888 (b=3), A210434 (b=4), A210435 (b=5), A210436 (b=6), A210062 (b=7), this sequence (b=11).

Programs

  • Mathematica
    a[n_] := IntegerLength[11^n]; Array[a, 100, 0] (* Amiram Eldar, Oct 22 2021 *)
  • PARI
    a(n) = #Str(11^n);
    
  • Python
    def a(n): return len(str(11**n))
    print([a(n) for n in range(98)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) = A055642(A001020(n)) = A055642(11^n).

A013618 Triangle of coefficients in expansion of (1+11x)^n.

Original entry on oeis.org

1, 1, 11, 1, 22, 121, 1, 33, 363, 1331, 1, 44, 726, 5324, 14641, 1, 55, 1210, 13310, 73205, 161051, 1, 66, 1815, 26620, 219615, 966306, 1771561, 1, 77, 2541, 46585, 512435, 3382071, 12400927, 19487171, 1, 88, 3388, 74536, 1024870, 9018856, 49603708, 155897368, 214358881
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,11} having n-k zeros. - Milan Janjic, Jul 24 2015

Crossrefs

Cf. A001020 (right edge).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+11*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015

Formula

G.f.: 1 / (1 - x(1+11y)).
T(n,k) = 11^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*10^(n-i). Row sums are 12^n = A001021. - Mircea Merca, Apr 28 2012

A013795 a(n) = 11^(4*n+3).

Original entry on oeis.org

1331, 19487171, 285311670611, 4177248169415651, 61159090448414546291, 895430243255237372246531, 13109994191499930367061460371, 191943424957750480504146841291811, 2810243684806424785061213903353404851
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001020. - Michel Marcus, Apr 08 2017

Programs

Formula

a(n) = 14641*a(n-1). - Harvey P. Dale, May 26 2016
G.f.: 1331/(1 - 14641x). - Indranil Ghosh, Apr 09 2017

A013861 a(n) = 11^(5*n+4).

Original entry on oeis.org

14641, 2357947691, 379749833583241, 61159090448414546291, 9849732675807611094711841, 1586309297171491574414436704891, 255476698618765889551019445759400441, 41144777789250865278081232758997200423491
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001020 (11^n), A016897 (5*n+4).

Programs

A038259 Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j)*5^j.

Original entry on oeis.org

1, 6, 5, 36, 60, 25, 216, 540, 450, 125, 1296, 4320, 5400, 3000, 625, 7776, 32400, 54000, 45000, 18750, 3125, 46656, 233280, 486000, 540000, 337500, 112500, 15625, 279936, 1632960, 4082400, 5670000, 4725000, 2362500, 656250, 78125
Offset: 0

Views

Author

Keywords

Examples

			   1
   6    5
  36   60   25
216  540  450  125
1296 4320 5400 3000  625
7776 32400 54000 45000 18750 3125
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

Crossrefs

Cf. A001020 (row sums).

Programs

  • Mathematica
    Table[Binomial[k,m]6^(k-m) 5^m,{k,0,10},{m,0,k}]//Flatten (* Harvey P. Dale, Aug 26 2020 *)
Previous Showing 51-60 of 92 results. Next