cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A067419 Fourth column of triangle A067417.

Original entry on oeis.org

1, 6, 72, 864, 10368, 124416, 1492992, 17915904, 214990848, 2579890176, 30958682112, 371504185344, 4458050224128, 53496602689536, 641959232274432, 7703510787293184, 92442129447518208, 1109305553370218496, 13311666640442621952, 159739999685311463424
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067403 (third column), A067420 (fifth column), A001021 (powers of 12).

Programs

  • Magma
    [Ceiling(6*(3*4)^(n-1)): n in [0..20]]; // Vincenzo Librandi, Oct 02 2011
  • Mathematica
    Join[{1}, NestList[12*# &, 6, 20]] (* Paolo Xausa, Sep 03 2024 *)

Formula

a(n) = A067417(n+3, 3).
a(n) = 6*(3*4)^(n-1), n >= 1, a(0)=1.
G.f.: (1-6*x)/(1-12*x).
a(n) = Sum_{k=0..n} A134309(n,k)*6^k = Sum_{k=0..n} A055372(n,k)*5^k. - Philippe Deléham, Feb 04 2012

A194887 Numbers that are the sum of two powers of 12.

Original entry on oeis.org

2, 13, 24, 145, 156, 288, 1729, 1740, 1872, 3456, 20737, 20748, 20880, 22464, 41472, 248833, 248844, 248976, 250560, 269568, 497664, 2985985, 2985996, 2986128, 2987712, 3006720, 3234816, 5971968, 35831809, 35831820, 35831952, 35833536, 35852544, 36080640
Offset: 1

Views

Author

Jeremy Gardiner, Oct 09 2011

Keywords

Comments

Parity of this sequence is A073424.

Examples

			12^0 + 12^2 = 145
		

Crossrefs

Programs

  • Mathematica
    t = 12^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
    Total/@Tuples[12^Range[0,10],2]//Union (* Harvey P. Dale, Jul 20 2019 *)

Extensions

Typo in example corrected by Zak Seidov, Oct 23 2011

A100851 Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Examples

			From _Stefano Spezia_, Apr 28 2024: (Start)
Triangle begins:
   1;
   2,  6;
   4, 12,  36;
   8, 24,  72, 216;
  16, 48, 144, 432, 1296;
  32, 96, 288, 864, 2592, 7776;
  ...
(End)
		

Crossrefs

Programs

Formula

T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
T(n,n) = A000400(n) = A100852(n,n).
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
Sum_{n>=0, k=0..n} 1/T(n,k) = 12/5. - Amiram Eldar, May 12 2025

A117961 Hexagonal numbers with prime indices.

Original entry on oeis.org

6, 15, 45, 91, 231, 325, 561, 703, 1035, 1653, 1891, 2701, 3321, 3655, 4371, 5565, 6903, 7381, 8911, 10011, 10585, 12403, 13695, 15753, 18721, 20301, 21115, 22791, 23653, 25425, 32131, 34191, 37401, 38503, 44253, 45451, 49141, 52975, 55611
Offset: 1

Views

Author

Jonathan Vos Post, Apr 05 2006

Keywords

Comments

See also: A034953 Triangular numbers (A000217) with prime indices. A001248 Squares of primes. A116995 Pentagonal numbers with prime indices. A000384 Hexagonal numbers: n(2n-1). There are no prime hexagonal numbers. The n-th Hexagonal number A000384(n) = n*(2*n-1) is semiprime iff both n and 2*n-1 are prime iff A000384(n) is an element of A001358 iff n is an element of A005382.

Crossrefs

Programs

  • Mathematica
    With[{hex=Table[n(2n-1),{n,250}]},Flatten[Table[Take[hex,{Prime[n]}],{n, 40}]]] (* Harvey P. Dale, Dec 04 2011 *)

Formula

a(n) = A000040(n)*(2*A000040(n)-1). a(n) = A000384(prime(n)). a(n) = number of divisors of 12^(prime(n)-1) = A000005(A001021(A000040(n)-1)).

A013717 a(n) = 12^(2*n + 1).

Original entry on oeis.org

12, 1728, 248832, 35831808, 5159780352, 743008370688, 106993205379072, 15407021574586368, 2218611106740436992, 319479999370622926848, 46005119909369701466112, 6624737266949237011120128
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001021.

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 144*a(n-1), a(0)=12.
G.f.: 12/(1-144*x). (End)

A038492 Sums of 2 distinct powers of 12.

Original entry on oeis.org

13, 145, 156, 1729, 1740, 1872, 20737, 20748, 20880, 22464, 248833, 248844, 248976, 250560, 269568, 2985985, 2985996, 2986128, 2987712, 3006720, 3234816, 35831809, 35831820, 35831952, 35833536, 35852544, 36080640, 38817792, 429981697, 429981708, 429981840, 429983424, 430002432, 430230528
Offset: 1

Views

Author

Keywords

Crossrefs

Base-12 interpretation of A038444.

Programs

  • Mathematica
    Take[Union[Plus@@@Subsets[12^Range[0,20],{2}]],50] (* Harvey P. Dale, Dec 16 2010 *)
  • Python
    from math import isqrt
    def A038492(n): return 12**(m:=isqrt(n<<3)+1>>1)+12**(n-1-(m*(m-1)>>1)) # Chai Wah Wu, Apr 04 2025

Extensions

More terms from Vincenzo Librandi, Aug 06 2009
Offset corrected by Amiram Eldar, Jul 14 2022

A067413 Sixth column of triangle A067410.

Original entry on oeis.org

1, 7, 84, 1008, 12096, 145152, 1741824, 20901888, 250822656, 3009871872, 36118462464, 433421549568, 5201058594816, 62412703137792, 748952437653504, 8987429251842048, 107849151022104576, 1294189812265254912
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

The fifth column is [1,6,60,600,6000,60000,...].

Crossrefs

Cf. A067412 (fourth column), A067414 (seventh column), A001021 (powers of 12).

Formula

a(n)= A067410(n+5, 5). a(n)= 7*12^(n-1), n>=1, a(0)=1.
G.f.: (1-5*x)/(1-12*x).

A100401 Digital root of 3^n.

Original entry on oeis.org

1, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Cino Hilliard, Dec 30 2004

Keywords

Comments

This sequence also gives the digital root of 12^n, 21^n, 30^n, 39^n, 48^n, 57^n, ... (any k^n where k is congruent to 3 mod 9). - Timothy L. Tiffin, Dec 02 2023

Examples

			For n=14, the digits of 3^14 = 4782969 sum to 45, whose digits sum to 9. So, a(14) = 9.
		

Crossrefs

Programs

Formula

a(n) = 3^n mod 18. - Zerinvary Lajos, Nov 25 2009
From Timothy L. Tiffin, Nov 30 2023: (Start)
a(n) = 9 for n >= 2.
G.f.: (1+2x+6x^2)/(1-x).
a(n) = A100403(n) for n <> 1. (End)
a(n) = A010888(A000244(n)). - Michel Marcus, Dec 01 2023
a(n) = A010888(A001021(n)) = A010888(A009965(n)) = A010888(A009974(n)) = A010888(A009983(n)) = A010888(A009992(n)) = A010888(A225374(n)). - Timothy L. Tiffin, Dec 02 2023
E.g.f.: 9*exp(x) - 6*x - 8. - Elmo R. Oliveira, Aug 08 2024
a(n) = A007953(3*a(n-1)) = A010888(3*a(n-1)). - Stefano Spezia, Mar 20 2025

A013750 a(n) = 12^(3*n + 1).

Original entry on oeis.org

12, 20736, 35831808, 61917364224, 106993205379072, 184884258895036416, 319479999370622926848, 552061438912436417593344, 953962166440690129601298432, 1648446623609512543951043690496
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001021.

Programs

Formula

From Philippe Deléham, Nov 30 2008: (Start)
a(n) = 1728*a(n-1); a(0)=12.
G.f.: 12/(1-1728*x).
a(n) = A013751(n)/12. (End)

A013751 a(n) = 12^(3*n + 2).

Original entry on oeis.org

144, 248832, 429981696, 743008370688, 1283918464548864, 2218611106740436992, 3833759992447475122176, 6624737266949237011120128, 11447545997288281555215581184
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001021.

Programs

Formula

From Philippe Deléham, Nov 30 2008: (Start)
a(n) = 1728*a(n-1); a(0)=144.
G.f.: 144/(1-1728*x).
a(n) = 12*A013750(n). (End)
Previous Showing 21-30 of 58 results. Next