cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A133345 a(n) = 2*a(n-1) + 14*a(n-2) for n>1, a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 16, 46, 316, 1276, 6976, 31816, 161296, 768016, 3794176, 18340576, 89799616, 436367296, 2129929216, 10369000576, 50557010176, 246280028416, 1200358199296, 5848636796416, 28502288382976, 138885491915776
Offset: 0

Views

Author

Philippe Deléham, Dec 21 2007

Keywords

Comments

Binomial transform of A001024 (powers of 15), with interpolated zeros.
a(n) is the number of compositions of n when there are 1 type of 1 and 15 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

Formula

G.f.: (1-x)/(1-2*x-14*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*15^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=15, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = (b*i)^(n-1)*(b*i*ChebyshevU(n, -i/b) - ChebyshevU(n-1, -i/b)), with b = sqrt(14). - G. C. Greubel, Oct 15 2022

A009989 Powers of 45.

Original entry on oeis.org

1, 45, 2025, 91125, 4100625, 184528125, 8303765625, 373669453125, 16815125390625, 756680642578125, 34050628916015625, 1532278301220703125, 68952523554931640625, 3102863559971923828125, 139628860198736572265625, 6283298708943145751953125, 282748441902441558837890625
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 45), L(1, 45), P(1, 45), T(1, 45). Essentially same as Pisot sequences E(45, 2025), L(45, 2025), P(45, 2025), T(45, 2025). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 45-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-45*x). - Philippe Deléham, Nov 24 2008
a(n) = 45^n; a(n) = 45*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(45*x).
a(n) = A000244(n)*A001024(n) = A000351(n)*A001019(n). (End)

A067420 Fifth column of triangle A067417.

Original entry on oeis.org

1, 7, 105, 1575, 23625, 354375, 5315625, 79734375, 1196015625, 17940234375, 269103515625, 4036552734375, 60548291015625, 908224365234375, 13623365478515625, 204350482177734375, 3065257232666015625
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067419 (fourth column), A067421 (sixth column), A001024 (powers of 15).

Programs

Formula

a(n) = A067417(n+4, 4).
a(n) = 7*(3*5)^(n-1), n >= 1, a(0)=1.
G.f.: (1-8*x)/(1-15*x).

A147716 Triangle of coefficients in expansion of (14 + x)^n.

Original entry on oeis.org

1, 14, 1, 196, 28, 1, 2744, 588, 42, 1, 38416, 10976, 1176, 56, 1, 537824, 192080, 27440, 1960, 70, 1, 7529536, 3226944, 576240, 54880, 2940, 84, 1, 105413504, 52706752, 11294304, 1344560, 96040, 4116, 98, 1, 1475789056, 843308032, 210827008, 30118144, 2689120, 153664, 5488, 112, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2008

Keywords

Comments

Triangle T(n,k), read by rows, given by [14, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
       1;
      14,      1;
     196,     28,     1;
    2744,    588,    42,    1;
   38416,  10976,  1176,   56,  1;
  537824, 192080, 27440, 1960, 70, 1;
		

Crossrefs

Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), A038243 (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), this sequence (q=14), A027467 (q=15).

Programs

  • Magma
    [14^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 15 2021
    
  • Mathematica
    With[{m=8}, CoefficientList[CoefficientList[Series[1/(1-14*x-x*y), {x, 0, m}, {y, 0, m}], x], y]]//Flatten (* Georg Fischer, Feb 17 2020 *)
  • Sage
    flatten([[14^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021

Formula

T(n,k) = binomial(n,k) * 14^(n-k).
G.f.: 1/(1 - 14*x - x*y). - R. J. Mathar, Aug 12 2015
Sum_{k=0..n} T(n, k) = 15^n = A001024(n). - G. C. Greubel, May 15 2021

Extensions

a(36) corrected by Georg Fischer, Feb 17 2020

A100403 Digital root of 6^n.

Original entry on oeis.org

1, 6, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Cino Hilliard, Dec 31 2004

Keywords

Comments

Also the digital root of k^n for any k == 6 (mod 9). - Timothy L. Tiffin, Dec 02 2023

Examples

			For n=8, the digits of 6^8 = 1679616 sum to 36, whose digits sum to 9. So, a(8) = 9. - _Timothy L. Tiffin_, Dec 01 2023
		

Crossrefs

Programs

  • Mathematica
    PadRight[{1, 6}, 100, 9] (* Timothy L. Tiffin, Dec 03 2023 *)
  • PARI
    a(n) = if( n<2, [1,6][n+1], 9); \\ Joerg Arndt, Dec 03 2023

Formula

From Timothy L. Tiffin, Dec 01 2023: (Start)
a(n) = 9 for n >= 2.
G.f.: (1+5x+3x^2)/(1-x).
a(n) = A100401(n) for n <> 1.
a(n) = A010888(A000400(n)) = A010888(A001024(n)) = A010888(A009968(n)) = A010888(A009977(n)) = A010888(A009986(n)) = A010888(A159991(n)). (End)
E.g.f.: 9*exp(x) - 3*x - 8. - Elmo R. Oliveira, Aug 09 2024
a(n) = A007953(6*a(n-1)) = A010888(6*a(n-1)). - Stefano Spezia, Mar 20 2025

A013720 a(n) = 15^(2*n + 1).

Original entry on oeis.org

15, 3375, 759375, 170859375, 38443359375, 8649755859375, 1946195068359375, 437893890380859375, 98526125335693359375, 22168378200531005859375, 4987885095119476318359375, 1122274146401882171630859375
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001024 (15^n).

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 225*a(n-1), a(0)=15.
G.f.: 15/(1-225*x). (End)

A060220 Number of orbits of length n under the full 17-shift (whose periodic points are counted by A001026).

Original entry on oeis.org

17, 136, 1632, 20808, 283968, 4022064, 58619808, 871959240, 13176430176, 201599248032, 3115626937056, 48551851084080, 761890617915840, 12026987582075856, 190828203433892736, 3041324491793194440, 48661191875666868480, 781282469552728498992, 12582759772902701307744
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of monic irreducible polynomials of degree n over GF(17). - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=136 since there are 289 points of period 2 in the full 17-shift and 17 fixed points, so there must be (289-17)/2 = 136 orbits of length 2.
		

Crossrefs

Column 17 of A074650.

Programs

  • Magma
    A060220:= func< n | (1/n)*(&+[MoebiusMu(d)*(17)^Floor(n/d): d in Divisors(n)]) >;
    [A060220(n): n in [1..40]]; // G. C. Greubel, Sep 13 2024
    
  • Mathematica
    A060220[n_]:= DivisorSum[n, (17)^(n/#)*MoebiusMu[#] &]/n;
    Table[A060220[n], {n,40}] (* G. C. Greubel, Sep 13 2024 *)
  • PARI
    a001024(n) = 17^n;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A060220(n): return (1/n)*sum(moebius(k)*(17)^(n/k) for k in (1..n) if (k).divides(n))
    [A060220(n) for n in range(1,41)] # G. C. Greubel, Sep 13 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001026(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 17*x^k))/k. - Ilya Gutkovskiy, May 20 2019

Extensions

More terms from Michel Marcus, Sep 11 2017

A239284 a(n) = (15^n - (-1)^n)/16.

Original entry on oeis.org

0, 1, 14, 211, 3164, 47461, 711914, 10678711, 160180664, 2402709961, 36040649414, 540609741211, 8109146118164, 121637191772461, 1824557876586914, 27368368148803711, 410525522232055664, 6157882833480834961, 92368242502212524414, 1385523637533187866211
Offset: 0

Views

Author

Felix P. Muga II, Mar 14 2014

Keywords

Comments

Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1.
The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2 =(k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1|< 1. Thus, the ratio a(n+1)/a(n) converges to r as n approaches infinity.
Note that limit a(n+1)/a(n) = 15 as n approaches infinity with k=14 and t=15.
If n > 15 then | a(n+1)/a(n) - 15 | < 10^(-16).
The number of walks of length n between any two distinct vertices of the complete graph K_16. - Peter Bala, May 30 2024

Crossrefs

Cf. A062160 (row 15).

Programs

  • Magma
    [(15^n - (-1)^n)/16: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    CoefficientList[Series[x/(1-14*x-15*x^2), {x,0,50}], x] (* or *) Table[ (15^n - (-1)^n)/16, {n,0,30}] (* or *) LinearRecurrence[{14,15}, {0,1}, 30] (* G. C. Greubel, May 26 2018 *)
  • PARI
    a(n) = (15^n - (-1)^n)/16; \\ Michel Marcus, Mar 16 2014
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1 -14*x - 15*x^2))) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: x/(1 - 14*x - 15*x^2).
a(n) = 14*a(n-1) + 15*a(n-2) for n > 1, a(0) = 0, a(1) = 1.
a(n) = (1/16)*(15^n - (-1)^n).
a(n) = (1/16)*( A001024(n) - A033999(n) ).
E.g.f.: (exp(15*x) - exp(-x))/16. - G. C. Greubel, May 26 2018

A013756 a(n) = 15^(3*n + 1).

Original entry on oeis.org

15, 50625, 170859375, 576650390625, 1946195068359375, 6568408355712890625, 22168378200531005859375, 74818276426792144775390625, 252511682940423488616943359375, 852226929923929274082183837890625, 2876265888493261300027370452880859375
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001024.

Programs

Formula

From Philippe Deléham, Dec 03 2008: (Start)
a(n) = 3375*a(n-1); a(0)=15
G.f.: 15/(1-3375*x). (End)

A013757 a(n) = 15^(3*n + 2).

Original entry on oeis.org

225, 759375, 2562890625, 8649755859375, 29192926025390625, 98526125335693359375, 332525673007965087890625, 1122274146401882171630859375, 3787675244106352329254150390625, 12783403948858939111232757568359375
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001024.

Programs

Formula

From Philippe Deléham, Dec 03 2008: (Start)
a(n) = 3375*a(n-1); a(0)=225.
G.f.: 225/(1-3375*x). (End)
Previous Showing 11-20 of 35 results. Next