A006058
Number of connected labeled T_4-topologies with n points.
Original entry on oeis.org
1, 1, 3, 16, 145, 2111, 47624, 1626003, 82564031, 6146805142, 662718022355, 102336213875523, 22408881211102698, 6895949927379360277, 2958271314760111914191, 1756322140048351303019576
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herman Jamke, Table of n, a(n) for n = 0..19
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}] (* Gus Wiseman, Aug 05 2019 *)
A000798 = Append[Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]], 0];
a[n_] := If[n == 0, 1, Sum[ Binomial[n, k] A000798[[k+1]], {k, 0, n-1}]];
a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Jan 01 2020 *)
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A001927
Number of connected partially ordered sets with n labeled points.
Original entry on oeis.org
1, 1, 2, 12, 146, 3060, 101642, 5106612, 377403266, 40299722580, 6138497261882, 1320327172853172, 397571105288091506, 166330355795371103700, 96036130723851671469482, 76070282980382554147600692, 82226869197428315925408327266, 120722306604121583767045993825620, 239727397782668638856762574296226842
Offset: 0
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. M. Bender et al., Combinatorics and field theory, arXiv:quant-ph/0604164, 2006.
- G. Brinkmann, B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179 (Table II, up to 18 points)
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
-
A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
max = Length[A001035]-1;
B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
A[x_] = 1 + Log[B[x]];
CoefficientList[A[x] + O[x]^(max-1), x]*Range[0, max-2]! (* Jean-François Alcover, Apr 17 2014, updated Aug 30 2018 *)
A001929
Number of connected topologies on n labeled points.
Original entry on oeis.org
1, 1, 3, 19, 233, 4851, 158175, 7724333, 550898367, 56536880923, 8267519506789, 1709320029453719, 496139872875425839, 200807248677750187825, 112602879608997769049739, 86955243134629606109442219, 91962123875462441868790125305, 132524871920295877733718959290203, 259048612476248175744581063815546423
Offset: 0
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. M. Bender et al., Combinatorics and Field theory, arXiv:quant-ph/0604164, 2006.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179, Table IV up to 18 points
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
-
A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
max = Length[A001035]-1;
B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
A[x_] = 1 + Log[B[x]];
A001927 = CoefficientList[ A[x] + O[x]^(max-1), x]*Range[0, max-2]!;
a[n_] := Sum[StirlingS2[n, k] *A001927[[k+1]], {k, 0, n}];
Table[a[n], {n, 0, max -2}] (* Jean-François Alcover, Aug 30 2018, after Vladeta Jovovic *)
A006057
Number of topologies on n labeled points satisfying axioms T_0-T_4.
Original entry on oeis.org
1, 1, 3, 16, 137, 1826, 37777, 1214256, 60075185, 4484316358, 493489876721, 78456654767756, 17735173202222665, 5630684018989523274, 2486496790249207981169, 1515191575312017416011456
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008, Table of n, a(n) for n = 0..19
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- Messaoud Kolli, Direct and Elementary Approach to Enumerate Topologies on a Finite Set, J. Integer Sequences, Volume 10, 2007, Article 07.3.1.
- M. Kolli, On the cardinality of the T_0-topologies on a finite set, International Journal of Combinatorics, Volume 2014 (2014), Article ID 798074, 7 pages.
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A002824
Number of precomplete Post functions.
Original entry on oeis.org
1, 3, 18, 190, 3285, 88851, 3640644, 220674924, 19427552055, 2448107338105, 436330306419678, 108909970814260122, 37752710546082668409, 18044326480066641231855, 11818118910855384843861960, 10549135258779933616014791704, 12772521057179994145518171256587
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
- E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
-
A001035 = DeleteCases[Import["https://oeis.org/A001035/b001035.txt", "Table"], b_ /; ! MatchQ[b, {_Integer, _Integer}] ][[All, 2]];
a[n_] := Binomial[n, 2] * A001035[[n - 1]];
Table[a[n], {n, 2, Length[A001035] + 1}] (* Jean-François Alcover, May 11 2019 *)
A121337
Number of idempotent relations on n labeled elements.
Original entry on oeis.org
1, 2, 11, 123, 2360, 73023, 3465357
Offset: 0
Florian Kammüller (flokam(AT)cs.tu-berlin.de), Aug 28 2006
a(2) = 11 because given a set {a,b} of two elements, of the 2^(2*2) = 16 relations on the set, only 5 are not idempotent. - _Michael Somos_, Jul 28 2013
These 5 relations that are not idempotent are: {(a,b)}, {(b,a)}, {(a,b),(b,a)}, {(a,b),(b,a),(b,b)}, {(a,a),(a,b),(b,a)}. - _Geoffrey Critzer_, Aug 07 2016
- F. Kammüller, Interactive Theorem Proving in Software Engineering, Habilitationsschrift, Technische Universitaet Berlin (2006).
- Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Decker, 1982.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- K. K.-H. Butler and G. Markowsky, The Number of Maximal Subgroups of the Semigroup of Binary Relations, Kyungpook Math. J. Vol 12, June 1972.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- F. Kammüller, Counting idempotent relations.
- F. Kammüller and J. W. Sanders, Idempotent relations in Isabelle/HOL, International Colloquium on Theoretical Aspects of Computing, ICTAC'04. Volume 3407 of Lecture Notes in Computer Science, Springer-Verlag (2005).
- G. Pfeiffer, Counting transitive relations, J. Integer Sequences, Volume 7, 2004, #3.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
-
Prepend[Table[Length[Select[Tuples[Tuples[{0, 1}, n], n], (MatrixPower[#, 2] /. x_ /; x > 0 -> 1) == # &]], {n, 1, 4}], 1] (* Geoffrey Critzer, Aug 07 2016 *)
A245567
Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other.
Original entry on oeis.org
2, 1, 1, 5, 76, 5993, 7689745, 2414465044600, 56130437141763247212112, 286386577668298408602599478477358234902247
Offset: 0
For n = 0, a(0) = 2 by the antisets {}, {{}}.
For n = 1, a(1) = 1 by the antiset {{1}}.
For n = 2, a(2) = 1 by the antiset {{1},{2}}.
For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
Cf.
A000372 (Dedekind numbers),
A006126 (Number of antichain covers of a labeled n-set).
Sequences counting and ranking T_0 structures:
A309615 (covering set-systems closed under intersection),
A319559 (unlabeled set-systems by weight),
A319637 (unlabeled covering set-systems),
A326939 (covering sets of subsets),
A326943 (covering sets of subsets closed under intersection),
A326944 (covering sets of subsets with {} and closed under intersection),
A326945 (sets of subsets closed under intersection),
A326947 (BII-numbers of set-systems),
A326949 (unlabeled sets of subsets),
A326959 (set-systems closed under intersection),
A327013 (unlabeled covering set-systems closed under intersection),
A327016 (BII-numbers of topologies).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
A006056
Number of topologies on n labeled points satisfying the T_4 axiom.
Original entry on oeis.org
1, 1, 4, 26, 255, 3642, 75606, 2316169, 106289210, 7321773414, 748425136289, 111576624613588, 23864968806932886, 7225895692327786931, 3064182503223082011556, 1803904252801640389374494, 1463405916763710662849541695, 1625522872429294851288338156654
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herman Jamke, Table of n, a(n) for n = 0..19
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A006059
Number of connected labeled T_0-T_4-topologies with n points.
Original entry on oeis.org
1, 1, 2, 9, 76, 1095, 25386, 910161, 49038872, 3885510411, 445110425110, 72721717736613, 16755380125270788, 5393244363726095487, 2405910197342218830914, 1477264863856923105482745, 1241074736327051013648799024, 1419169006353332682835352361843
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herman Jamke, Table of n, a(n) for n = 0..19
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
More terms from Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2001
A006455
Number of partial orders on {1,2,...,n} that are contained in the usual linear order (i.e., xRy => x
Original entry on oeis.org
1, 1, 2, 7, 40, 357, 4824, 96428, 2800472, 116473461, 6855780268, 565505147444, 64824245807684
Offset: 0
a(3) = 7: {}, {1R2}, {1R3}, {2R3}, {1R2, 1R3}, {1R3, 2R3}, {1R2, 1R3, 2R3}.
- N. B. Hindman, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. P. Avann, The lattice of natural partial orders, Aequationes Mathematicae 8 (1972), 95-102.
- David Bevan, Gi-Sang Cheon and Sergey Kitaev, On naturally labelled posets and permutations avoiding 12-34, arXiv:2311.08023 [math.CO], 2023.
- Graham Brightwell, Hans Jürgen Prömel and Angelika Steger, The average number of linear extensions of a partial order, Journal of Combinatorial Theory A73 (1996), 193-206.
- S. R. Finch, Transitive relations, topologies and partial orders
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- L. H. Harper, The Range of a Steiner Operation, arXiv preprint arXiv:1608.07747 [math.CO], 2016.
- N. Hindman and N. J. A. Sloane, Correspondence, 1981-1991
- Florent Hivert and Nicolas M. Thiéry, Controlling the C3 Super Class Linearization Algorithm for Large Hierarchies of Classes, Order (2022).
- Adam King, A. Laubmeier, K. Orans, and A. Godbole, Universal and Overlap Cycles for Posets, Words, and Juggling Patterns, arXiv preprint arXiv:1405.5938 [math.CO], 2014.
- D. E. Knuth, POSETS, program for n = 10, 11, 12.
- J.-G. Luque, L. Mignot and F. Nicart, Some Combinatorial Operators in Language Theory, arXiv preprint arXiv:1205.3371 [cs.FL], 2012. - _N. J. A. Sloane_, Oct 22 2012
- Index entries for sequences related to posets
Additional comments and more terms from
Don Knuth, Dec 03 2001
Comments