Original entry on oeis.org
1, 10, -1, 100, -20, 1, 1000, -300, 30, -1, 10000, -4000, 600, -40, 1, 100000, -50000, 10000, -1000, 50, -1, 1000000, -600000, 150000, -20000, 1500, -60, 1, 10000000, -7000000, 2100000, -350000, 35000, -2100, 70
Offset: 1
Triangle begins:
1;
10, -1;
100, -20, 1;
1000, -300, 30, -1;
10000, -4000, 600, -40, 1;
A207832
Numbers x such that 20*x^2 + 1 is a perfect square.
Original entry on oeis.org
0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..500
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
-
m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
-
readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
-
LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}] (* Herbert Kociemba, Jun 05 2022 *)
-
makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */
A072819
Variance of time for a random walk starting at 0 to reach one of the boundaries at +n or -n for the first time.
Original entry on oeis.org
0, 0, 8, 48, 160, 400, 840, 1568, 2688, 4320, 6600, 9680, 13728, 18928, 25480, 33600, 43520, 55488, 69768, 86640, 106400, 129360, 155848, 186208, 220800, 260000, 304200, 353808, 409248, 470960, 539400, 615040, 698368, 789888, 890120, 999600
Offset: 0
a(2)=8 since for a random walk with absorbing boundaries at +2 or -2, the probability of first reaching a boundary at time t=2 is 1/2, at t=4 is 1/4, at t=6 is 1/8, at t=8 is 1/16, etc., giving a mean of 2/2 + 4/4 + 6/8 + 8/16 + ... = 4 and a variance of 2^2/2 + 4^2/4 + 6^2/8 + 8^2/16 + ... - 4^2 = 24 - 16 = 8.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000290 (i.e., n^2) for mean time.
A072818(n)=sqrt(a(
A001079(n))) attempts to identify the integer standard deviations.
A122653
a(n) = 10*a(n-1) - a(n-2) with a(0)=0, a(1)=6.
Original entry on oeis.org
0, 6, 60, 594, 5880, 58206, 576180, 5703594, 56459760, 558894006, 5532480300, 54765908994, 542126609640, 5366500187406, 53122875264420, 525862252456794, 5205499649303520, 51529134240578406, 510085842756480540, 5049329293324226994, 49983207090485789400
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 301).
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
-
CoefficientList[Series[(6 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{10,-1},{0,6},30] (* Harvey P. Dale, Dec 16 2014 *)
-
a(n)=if(n<2,(n%2)*6,10*a(n-1)-a(n-2)) \\ Benoit Cloitre, Sep 23 2006
A072818
Possibly the only integers of the form sqrt(m^2*(m^2-1)*2/3) [only checked for the first 5 terms].
Original entry on oeis.org
0, 20, 1960, 192060, 18819920, 1844160100, 180708869880, 17707625088140, 1735166549767840, 170028614252160180, 16661069030161929800, 1632614736341616960220, 159979583092448300171760
Offset: 0
0 and 20 are at the start of the sequence since m^2*(m^2-1)*2/3 (A072819) starts 0, 0, 8, 48, 160, 400, 840, 1568, ... and the only squares among these are 0 and 400 with square roots of 0 and 20.
A098308
Unsigned member r=-8 of the family of Chebyshev sequences S_r(n) defined in A092184.
Original entry on oeis.org
0, 1, 8, 81, 800, 7921, 78408, 776161, 7683200, 76055841, 752875208, 7452696241, 73774087200, 730288175761, 7229107670408, 71560788528321, 708378777612800, 7012226987599681, 69413891098384008, 687126683996240401
Offset: 0
-
LinearRecurrence[{9,9,-1},{0,1,8},40] (* Harvey P. Dale, Aug 11 2013 *)
A278438
Numbers m such that T(m) + 2*T(m+1) is a square, where T = A000217.
Original entry on oeis.org
7, 799, 78407, 7683199, 752875207, 73774087199, 7229107670407, 708378777612799, 69413891098384007, 6801852948864019999, 666512175097575576007, 65311391306613542428799, 6399849835873029582446407, 627119972524250285537319199, 61451357457540654953074835207
Offset: 1
Cf.
A278310: numbers m such that T(m) + 3*T(m+1) is a square.
-
Iv:=[7, 799]; [n le 2 select Iv[n] else 98*Self(n-1)-Self(n-2)+112: n in [1..20]];
-
P:=proc(q) local n; for n from 1 to q do if type(sqrt((3*n^2+7*n+4)/2),integer) then print(n); fi; od; end: P(10^9); # Paolo P. Lava, Nov 25 2016
-
Table[((5 + 2 Sqrt[6])^(2 n) + (5 - 2 Sqrt[6])^(2 n))/12 - 7/6, {n, 1, 20}]
RecurrenceTable[{a[1] == 7, a[2] == 799, a[n] == 98 a[n - 1] - a[n - 2] + 112}, a, {n, 1, 20}]
LinearRecurrence[{99,-99,1},{7,799,78407},20] (* Harvey P. Dale, Oct 18 2024 *)
-
Vec(x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)) + O(x^20)) \\ Colin Barker, Nov 27 2016
-
def A278438():
a, b = 7, 799
yield a
while True:
yield b
a, b = b, 98*b - a + 112
a = A278438(); print([next(a) for in range(15)]) # _Peter Luschny, Nov 24 2016
A106330
Numbers k such that k^2 = 24*j^2 + 25.
Original entry on oeis.org
5, 7, 11, 25, 59, 103, 245, 583, 1019, 2425, 5771, 10087, 24005, 57127, 99851, 237625, 565499, 988423, 2352245, 5597863, 9784379, 23284825, 55413131, 96855367, 230496005, 548533447, 958769291, 2281675225, 5429921339, 9490837543, 22586256245, 53750679943
Offset: 1
A290284
Number of pairs of integers (x,y) satisfying the Diophantine equation x^2 - A000037(n)*y^2 = m such that x/y gives a convergent series towards sqrt(A000037(n)).
Original entry on oeis.org
3, 3, 5, 4, 5, 4, 7, 6, 5, 15, 8, 5, 9, 7, 12, 6, 10, 12, 9, 6, 11, 9, 12, 21, 7, 17, 9, 10, 11, 7, 13, 10, 9, 9, 19, 8, 20, 15, 13, 24, 12, 8, 15, 12, 16, 27, 16, 13, 9, 14, 27, 17, 12
Offset: 1
For A000037(4) = 6, a(4) = 4 we have the following sequences of pairs (x,y):
m = 1: x(0) = 1, x(1) = 5, x(i) = 10*x(i-1) - x(i-2) as in A001079(i) and y(0) = 0, y(1) = 2, y(i) = 10*y(i-1) - y(i-2) as in A001078(i);
m = -6: x(0) = 0, x(1) = 12, x(i) = 10*x(i-1) - x(i-2) as in A004291(i) (for i > 0) and y(0) = 1, y(1) = 5, y(i) = 10*y(i-1) - y(i-2) as in A001079(i);
m = -5: x(0) = 1, x(1) = 17, x(i) = 10*x(i-1) - x(i-2) and y(0) = 1, y(1) = 7, y(i) = 10*y(i-1) - y(i-2);
m = -2: x(0) = 2, x(1) = 22, x(i) = 10*x(i-1) - x(i-2) and y(0) = 1, y(1) = 9, y(i) = 10*y(i-1) - y(i-2) as in A072256(i+1).
In some cases a combination of A000037(n) and m has more than one integer pair sequence, for example A000037(5) = 7 and m = -3 has two integer pair sequences:
x(0) = 2, x(1) = 37, x(i) = 16*x(i-1) - x(i-2) and y(0) = 1, y(1) = 14, y(i) = 16*y(i-1) - y(i-2);
x(0) = -2, x(1) = 5, x(i) = 16*x(i-1) - x(i-2) and y(0) = 1, y(1) = 2, y(i) = 16*y(i-1) - y(i-2).
For A000037(4) = 6, the sequence observed from x^2 - 6y^2 = 3 is not in the convergent series of sqrt(6) due to for example x1/y1 = 2643/1079 = sqrt(6) + 5.259842e-7 while the smaller x,y pair, x2/y2 = 2158/881 from x^2 - 6y^2 = -2 is a fraction closer to sqrt(5), 2158/881 = sqrt(6) - 5.259841e-7.
-
from fractions import Fraction
def FracSqrt(p):
a = Fraction(p/1)
b = Fraction(1/1)
e = Fraction(10**(-200))
while a-b > e:
a = (a+b)/2
b = p/a
return a
print("number: ")
pp = int(input())
p = FracSqrt(pp)
n = 0
while n >= 0:
n = n+1
q = p.limit_denominator(n)
if (n == 1) or (q != q0):
t = q*n
m = t*t-pp*n*n
print(n,q,m)
q0 = q
Comments