cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A165293 Inverse of A038303, and generalization of A130595.

Original entry on oeis.org

1, 10, -1, 100, -20, 1, 1000, -300, 30, -1, 10000, -4000, 600, -40, 1, 100000, -50000, 10000, -1000, 50, -1, 1000000, -600000, 150000, -20000, 1500, -60, 1, 10000000, -7000000, 2100000, -350000, 35000, -2100, 70
Offset: 1

Views

Author

Mark Dols, Sep 13 2009

Keywords

Comments

Rows sum up to A001019 (powers of 9), diagonals to A004189, a generalization of A010892 (the inverse Fibonacci). Ratio of diagonal sums converges to a decimal sequence: A000108 (Catalan numbers), which is the squared difference of sqrt(2) and sqrt(3), or 5-sqrt(24). Ratio between first binomial transform (A054320 and A138288)of A004189, converges to sqrt(2/3). 1/(2*sqrt(24)) gives A000984 (central binomial coefficients) as a decimal sequence.
Triangle T(n,k), read by rows, given by [10,0,0,0,0,0,0,0,...] DELTA [ -1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009

Examples

			Triangle begins:
      1;
     10,    -1;
    100,   -20,   1;
   1000,  -300,  30,  -1;
  10000, -4000, 600, -40, 1;
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = (10-x)^n. - Philippe Deléham, Dec 15 2009
G.f.: x*y/(1-10*x+x*y). - R. J. Mathar, Aug 11 2015

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A072819 Variance of time for a random walk starting at 0 to reach one of the boundaries at +n or -n for the first time.

Original entry on oeis.org

0, 0, 8, 48, 160, 400, 840, 1568, 2688, 4320, 6600, 9680, 13728, 18928, 25480, 33600, 43520, 55488, 69768, 86640, 106400, 129360, 155848, 186208, 220800, 260000, 304200, 353808, 409248, 470960, 539400, 615040, 698368, 789888, 890120, 999600
Offset: 0

Views

Author

Henry Bottomley, Jul 14 2002

Keywords

Examples

			a(2)=8 since for a random walk with absorbing boundaries at +2 or -2, the probability of first reaching a boundary at time t=2 is 1/2, at t=4 is 1/4, at t=6 is 1/8, at t=8 is 1/16, etc., giving a mean of 2/2 + 4/4 + 6/8 + 8/16 + ... = 4 and a variance of 2^2/2 + 4^2/4 + 6^2/8 + 8^2/16 + ... - 4^2 = 24 - 16 = 8.
		

Crossrefs

Cf. A000290 (i.e., n^2) for mean time. A072818(n)=sqrt(a(A001079(n))) attempts to identify the integer standard deviations.

Programs

  • Magma
    [n^2*(n^2-1)*2/3: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
  • Mathematica
    CoefficientList[Series[8 (1 + x) x^2/(1 - x)^5, {x, 0, 35}], x] (* Michael De Vlieger, Jul 02 2019 *)

Formula

a(n) = n^2*(n^2 - 1)*2/3 = 4*A008911(n) = 8*A002415(n) = A069971(n, n).
G.f.: 8*(1 + x)*x^2/(1 - x)^5. - Arkadiusz Wesolowski, Feb 08 2012
E.g.f.: 2*exp(x)*x^2*(6 + 6*x + x^2)/3. - Stefano Spezia, Dec 12 2021
a(n) = 2*n * A007290(n+1). - C.S. Elder, Jan 09 2024

A122653 a(n) = 10*a(n-1) - a(n-2) with a(0)=0, a(1)=6.

Original entry on oeis.org

0, 6, 60, 594, 5880, 58206, 576180, 5703594, 56459760, 558894006, 5532480300, 54765908994, 542126609640, 5366500187406, 53122875264420, 525862252456794, 5205499649303520, 51529134240578406, 510085842756480540, 5049329293324226994, 49983207090485789400
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2006

Keywords

Comments

Kekulé numbers for the benzenoids P''(n).
a(n) are the integer square roots of A032528(m) - 1. A001079 gives the value of m where these roots occur. Also see A122652. - Richard R. Forberg, Aug 05 2013
Numbers n such that 6*n^2 + 9 is a square. - Colin Barker, Mar 17 2014

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 301).

Programs

Formula

G.f.: 6x/(1 - 10x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = 6*A004189(n). - R. J. Mathar, Jun 22 2020
6*a(n)^2+9 = (3*A001079(n))^2 - detail of the Barker comment. - R. J. Mathar, Jun 22 2020

Extensions

More terms and better definition from Benoit Cloitre, Sep 23 2006

A072818 Possibly the only integers of the form sqrt(m^2*(m^2-1)*2/3) [only checked for the first 5 terms].

Original entry on oeis.org

0, 20, 1960, 192060, 18819920, 1844160100, 180708869880, 17707625088140, 1735166549767840, 170028614252160180, 16661069030161929800, 1632614736341616960220, 159979583092448300171760
Offset: 0

Views

Author

Henry Bottomley, Jul 14 2002

Keywords

Comments

These are the standard deviations of time for a random walk starting at 0 to reach one of the boundaries at +A001079(n) or -A001079(n) for the first time.

Examples

			0 and 20 are at the start of the sequence since m^2*(m^2-1)*2/3 (A072819) starts 0, 0, 8, 48, 160, 400, 840, 1568, ... and the only squares among these are 0 and 400 with square roots of 0 and 20.
		

Formula

a(n) = 98*a(n-1)-a(n-2) [starting with a(0)=0 and a(1)=20] =sqrt(A072819(A001079(n))).
G.f.: 20x/(1-98x+x^2). [Philippe Deléham, Nov 18 2008]

A098308 Unsigned member r=-8 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 8, 81, 800, 7921, 78408, 776161, 7683200, 76055841, 752875208, 7452696241, 73774087200, 730288175761, 7229107670408, 71560788528321, 708378777612800, 7012226987599681, 69413891098384008, 687126683996240401
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

((-1)^(n+1))*a(n) = S_{-8}(n), n>=0, defined in A092184.

Programs

  • Mathematica
    LinearRecurrence[{9,9,-1},{0,1,8},40] (* Harvey P. Dale, Aug 11 2013 *)

Formula

a(n)= (T(n, 5)-(-1)^n)/6, with Chebyshev's polynomials of the first kind evaluated at x=5: T(n, 5)=A001079(n)=((5+2*sqrt(6))^n + (5-2*sqrt(6))^n)/2.
a(n)= 10*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n)= 9*a(n-1) + 9*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=8.
G.f.: x*(1-x)/((1+x)*(1-10*x+x^2)) = x*(1-x)/(1-9*x-9*x^2+x^3) (from the Stephan link, see A092184).
a(x)=1/12(2*(-1)^x+(5+2*Sqrt[6])(5-2*Sqrt[6])^x+(5-2*Sqrt[6])(5+2*Sqrt[6])^x). - Harvey P. Dale, Aug 11 2013
a(n-1)+a(n) = A072256(n). - R. J. Mathar, Feb 19 2017

A278438 Numbers m such that T(m) + 2*T(m+1) is a square, where T = A000217.

Original entry on oeis.org

7, 799, 78407, 7683199, 752875207, 73774087199, 7229107670407, 708378777612799, 69413891098384007, 6801852948864019999, 666512175097575576007, 65311391306613542428799, 6399849835873029582446407, 627119972524250285537319199, 61451357457540654953074835207
Offset: 1

Views

Author

Bruno Berselli, Nov 23 2016

Keywords

Comments

It is well known that T(m) + k*T(m+1) is always a square for k=1. For k=3, the nonnegative values of m are the terms of A278310.
Square roots of T(m) + 2*T(m+1) are listed by A168520 (after 0).
Negative values of m for which T(m) + 2*T(m+1) is a square: -1, -2, -82, -7922, -776162, ...

Crossrefs

Subsequence of A056220.
Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square.

Programs

  • Magma
    Iv:=[7, 799]; [n le 2 select Iv[n] else 98*Self(n-1)-Self(n-2)+112: n in [1..20]];
    
  • Maple
    P:=proc(q) local n; for n from 1 to q do if type(sqrt((3*n^2+7*n+4)/2),integer) then print(n); fi; od; end: P(10^9); #  Paolo P. Lava, Nov 25 2016
  • Mathematica
    Table[((5 + 2 Sqrt[6])^(2 n) + (5 - 2 Sqrt[6])^(2 n))/12 - 7/6, {n, 1, 20}]
    RecurrenceTable[{a[1] == 7, a[2] == 799, a[n] == 98 a[n - 1] - a[n - 2] + 112}, a, {n, 1, 20}]
    LinearRecurrence[{99,-99,1},{7,799,78407},20] (* Harvey P. Dale, Oct 18 2024 *)
  • PARI
    Vec(x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)) + O(x^20)) \\ Colin Barker, Nov 27 2016
  • Sage
    def A278438():
        a, b = 7, 799
        yield a
        while True:
            yield b
            a, b = b, 98*b - a + 112
    a = A278438(); print([next(a) for  in range(15)]) # _Peter Luschny, Nov 24 2016
    

Formula

O.g.f.: x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: (exp((5-2*sqrt(6))^2*x) + exp((5+2*sqrt(6))^2*x) - 14*exp(x))/12 + 1.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>3.
a(n) = 98*a(n-1) - a(n-2) + 112 for n>2.
a(n) = a(-n) = ((5 + 2*sqrt(6))^(2*n) + (5 - 2*sqrt(6))^(2*n))/12 - 7/6.
a(n) = A001079(2*n)/6 - 7/6.
a(n) = 2*A001078(n)^2 - 1 = A122652(n)^2/2 - 1.
a(n) = -A278620(n+1) + 106*A278620(n) + 7*A278620(n-1).
Lim_{n -> infinity} a(n)/a(n-1) = (5 + 2*sqrt(6))^2.

A106330 Numbers k such that k^2 = 24*j^2 + 25.

Original entry on oeis.org

5, 7, 11, 25, 59, 103, 245, 583, 1019, 2425, 5771, 10087, 24005, 57127, 99851, 237625, 565499, 988423, 2352245, 5597863, 9784379, 23284825, 55413131, 96855367, 230496005, 548533447, 958769291, 2281675225, 5429921339, 9490837543, 22586256245, 53750679943
Offset: 1

Views

Author

Pierre CAMI, Apr 29 2005

Keywords

Comments

The ratio k(n) /(2*j(n)) tends to sqrt(6) as n increases.
k(n) = 2*b + 1, for n > 0, where b is a side of the Heronian triangle (5, b, b+1). - Andrés Ventas, Dec 13 2024

Crossrefs

Cf. A106331.

Programs

  • PARI
    Vec(-x*(7*x^5+11*x^4+25*x^3-11*x^2-7*x-5)/(x^6-10*x^3+1) + O(x^100)) \\ Colin Barker, Apr 16 2014

Formula

Recurrence: k(1)=5, k(2)=7, k(3)=11, k(4)=25, k(5)=10*k(2)-k(3), k(6)=10*k(3)-k(2) then k(n)=10*k(n-3)-k(n-6).
From Ralf Stephan, Nov 15 2010: (Start)
G.f.: (-7x^5-11x^4-25x^3+11x^2+7x+5)/(x^6-10x^3+1).
a(3n+1) = 5*A001079(n), a(3n+2) = A077409(n), a(3n+3) = A077250(n). (End)

Extensions

More terms from Ralf Stephan, Nov 15 2010
More terms from Colin Barker, Apr 16 2014

A290284 Number of pairs of integers (x,y) satisfying the Diophantine equation x^2 - A000037(n)*y^2 = m such that x/y gives a convergent series towards sqrt(A000037(n)).

Original entry on oeis.org

3, 3, 5, 4, 5, 4, 7, 6, 5, 15, 8, 5, 9, 7, 12, 6, 10, 12, 9, 6, 11, 9, 12, 21, 7, 17, 9, 10, 11, 7, 13, 10, 9, 9, 19, 8, 20, 15, 13, 24, 12, 8, 15, 12, 16, 27, 16, 13, 9, 14, 27, 17, 12
Offset: 1

Views

Author

A.H.M. Smeets, Jul 25 2017

Keywords

Comments

If (x(0),y(0)) and (x(1),y(1)) are solutions of the Diophantine equation x^2 - A000037(n)*y^2 = m, then (x(i),y(i)) with x(i) = A*x(i-1) - x(i-2) and y(i) = A*y(i-1) - y(i-2) are also solutions for i > 1. The sequence represents the number of different integer pair sequences where in all cases A = 2*A033313(A000037(n)). Each contributing sequences has to satisfy the condition that for all x < x(i) and all y < y(i), |x/y - sqrt(A000037(n))| > |x(i)/y(i) - sqrt(A000037(n))|.
a(A000037(n)) is not equal to the number of all sequences of pairs (x(i),y(i)) that are solutions of a Diophantine equation x^2 - D*y^2 = m, with -D <= m < D and D = A000037(n). For example for D = 5 we obtain two other sequences from Fibonacci sequence: (first) x(i) = 2*Fib(6i)-Fib(6i-1) and y(i) = Fib(6i-1) satisfy x^2 - D*y^2 = -4 and (second) x(i) = 2*Fib(6i+3) - Fib(6i+2) and y(i) = Fib(6i+2) satisfy x^2 - D*y^2 = 4; but neither of these satisfy the restriction that, for all x < x(i) and all y < y(i), |x/y - sqrt(D)| > |x(i)/y(i) - sqrt(D)|.
A good approximation for the order of magnitude of a(n) is given by 2*log(2*A033313(n)).
For a lower bound, all values m satisfying either m = -D + k^2 for k^2 < D or m = 1, D = A000037(n), contribute with a sequence to the convergent series of sqrt(D), so a(n) > floor(sqrt(D)) + 1.

Examples

			For A000037(4) = 6, a(4) = 4 we have the following sequences of pairs (x,y):
m = 1: x(0) = 1, x(1) = 5, x(i) = 10*x(i-1) - x(i-2) as in A001079(i) and y(0) = 0, y(1) = 2, y(i) = 10*y(i-1) - y(i-2) as in A001078(i);
m = -6: x(0) = 0, x(1) = 12, x(i) = 10*x(i-1) - x(i-2) as in A004291(i) (for i > 0) and y(0) = 1, y(1) = 5, y(i) = 10*y(i-1) - y(i-2) as in A001079(i);
m = -5: x(0) = 1, x(1) = 17, x(i) = 10*x(i-1) - x(i-2) and y(0) = 1, y(1) = 7, y(i) = 10*y(i-1) - y(i-2);
m = -2: x(0) = 2, x(1) = 22, x(i) = 10*x(i-1) - x(i-2) and y(0) = 1, y(1) = 9, y(i) = 10*y(i-1) - y(i-2) as in A072256(i+1).
In some cases a combination of A000037(n) and m has more than one integer pair sequence, for example A000037(5) = 7 and m = -3 has two integer pair sequences:
x(0) = 2, x(1) = 37, x(i) = 16*x(i-1) - x(i-2) and y(0) = 1, y(1) = 14, y(i) = 16*y(i-1) - y(i-2);
x(0) = -2, x(1) = 5, x(i) = 16*x(i-1) - x(i-2) and y(0) = 1, y(1) = 2, y(i) = 16*y(i-1) - y(i-2).
For A000037(4) = 6, the sequence observed from x^2 - 6y^2 = 3 is not in the convergent series of sqrt(6) due to for example x1/y1 = 2643/1079 = sqrt(6) + 5.259842e-7 while the smaller x,y pair, x2/y2 = 2158/881 from x^2 - 6y^2 = -2 is a fraction closer to sqrt(5), 2158/881 = sqrt(6) - 5.259841e-7.
		

Crossrefs

Programs

  • Python
    from fractions import Fraction
    def FracSqrt(p):
        a = Fraction(p/1)
        b = Fraction(1/1)
        e = Fraction(10**(-200))
        while a-b > e:
            a = (a+b)/2
            b = p/a
        return a
    print("number: ")
    pp = int(input())
    p = FracSqrt(pp)
    n = 0
    while n >= 0:
        n = n+1
        q = p.limit_denominator(n)
        if (n == 1) or (q != q0):
            t = q*n
            m = t*t-pp*n*n
            print(n,q,m)
        q0 = q
Previous Showing 41-49 of 49 results.