cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A345144 Product_{p primes, k>=1} ((p^(k+1) - 1)/(p^(k+1) - p))^(1/p^k).

Original entry on oeis.org

1, 5, 6, 1, 5, 9, 6, 8, 4, 6, 9, 3, 1, 0, 2, 4, 1, 6, 4, 3, 2, 6, 9, 6, 7, 8, 8, 9, 1, 4, 4, 5, 5, 5, 6, 4, 4, 3, 6, 4, 7, 3, 7, 6, 4, 6, 8, 2, 2, 2, 3, 2, 1, 6, 9, 9, 4, 5, 8, 6, 6, 4, 5, 7, 0, 9, 6, 8, 3, 5, 7, 8, 4, 9, 4, 9, 0, 9, 5, 3, 9, 8, 8, 9, 4, 2, 4, 4, 3, 0, 1, 0, 8, 6, 8, 0, 9, 1, 0, 3, 2, 1, 4, 3, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 09 2021

Keywords

Examples

			1.561596846931024164326967889144555644364737646822232169945866457...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 500; prod = 1; Do[Clear[f]; f[p_] := ((p^(k + 1) - 1)/(p^(k + 1) - p))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 100]]; Print[prod], {k, 1, 200}]

Formula

Equals exp(1) * lim_{n->infinity} (A066780(n)^(1/n)) / n.

A085244 Permanent of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j) for 1 <= i,j <= n.

Original entry on oeis.org

1, 3, 14, 112, 872, 14372, 154480, 3098480, 59710816, 1688186176, 27925409152, 1327833590272, 25675495200768, 1017195720916224, 47444016840290304, 2267031138313024512, 56480432945454004224, 4051971981329937580032
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 11 2003

Keywords

Crossrefs

Programs

  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p) for(n=1,26,a=matrix(n,n,i,j,gcd(i,j));print1(permRWNb(a)",")) - Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007

Extensions

More terms from Vladeta Jovovic, Aug 13 2003

A063770 Numbers k such that Sum_{j=1..k} sigma(j) divides Product_{j=1..k} phi(j).

Original entry on oeis.org

1, 28, 52, 53, 55, 63, 76, 159, 166, 176, 219, 230, 289, 302, 303, 318, 321, 327, 348, 360, 364, 365, 381, 383, 402, 417, 430, 434, 438, 444, 451, 452, 454, 465, 469, 478, 504, 512, 522, 530, 531, 557, 559, 570, 572, 584, 595, 613, 629, 631, 641, 645, 684
Offset: 1

Views

Author

Jason Earls, Aug 15 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=700,s,p},s=Accumulate[DivisorSigma[1,Range[nn]]];p=FoldList[ Times,EulerPhi[ Range[nn]]]; Position[ Thread[{s,p}],?(Mod[#[[2]],#[[1]]]==0&),1,Heads->False]]//Flatten (* _Harvey P. Dale, Feb 28 2024 *)
  • PARI
    j=[]; for(n=1,1300,a=sum(k=1,n, sigma(k)); b=prod(k=1,n,eulerphi(k)); if(Mod(b,a)==0,j=concat(j,n))); j
    
  • PARI
    { n=0; s=0; p=1; for (m=1, 10^9, s+=sigma(m); p*=eulerphi(m); if(p%s == 0, write("b063770.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 30 2009

A067578 a(n) = Product_{i=1..n} phi(i) * Sum_{i=1..n} 1/phi(i) where phi is the Euler totient function A000010(n).

Original entry on oeis.org

1, 2, 5, 12, 52, 120, 752, 3200, 19968, 84480, 863232, 3637248, 44384256, 275152896, 2254307328, 18459131904, 298743496704, 1846819160064, 33568893960192, 274421835104256, 3340027488632832, 33963860494909440, 752840786973818880, 6146715129678397440, 123926213264670720000
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(i=1, n, eulerphi(i)) * sum(i=1, n, 1/eulerphi(i)); \\ Michel Marcus, Jan 09 2021

Extensions

More terms from Michel Marcus, Jan 09 2021

A177066 Determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(2i-1,2j-1) for 1 <= i,j <= n.

Original entry on oeis.org

1, 2, 8, 48, 288, 2880, 34560, 276480, 4423680, 79626240, 955514880, 21021327360, 420426547200, 7567677849600, 211894979788800, 6356849393664000, 127136987873280000, 3051287708958720000, 109846357522513920000
Offset: 1

Views

Author

John W. Layman, Dec 09 2010

Keywords

Comments

It appears, but has not been proved, that the ratios a(n+1)/a(n) give phi(2n+1) (A037225).
See A001088, A059381, and A059382 for determinants of matrices M defined by M(i,j) = gcd(i,j), gcd(i^2,j^2), and gcd(i^3,j^3), respectively.

Crossrefs

Programs

  • Maple
    A177066 := proc(n) M := Matrix(n) ; for i from 1 to n do for j from 1 to n do M[i,j] := igcd(2*i-1,2*j-1) ; end do: end do: LinearAlgebra[Determinant](M) ; end proc: # R. J. Mathar, Dec 10 2010

A321613 Partial products of the unitary totient function (A047994): a(n) = Product_{k=1..n} uphi(k).

Original entry on oeis.org

1, 1, 2, 6, 24, 48, 288, 2016, 16128, 64512, 645120, 3870720, 46448640, 278691840, 2229534720, 33443020800, 535088332800, 4280706662400, 77052719923200, 924632639078400, 11095591668940800, 110955916689408000, 2441030167166976000, 34174422340337664000
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2018

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = ugcd(i,j) for 1 <= i,j <= n, where ugcd(i,j) in the greatest common unitary divisor of i and j (A165430).
The unitary version of A001088.

Examples

			a(4) = uphi(1) * uphi(2) * uphi(3) * uphi(4) = 1 * 1 * 2 * 3 = 6.
		

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); FoldList[ Times, uphi /@ Range[50]]
  • PARI
    uphi(n) = my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
    a(n) = prod(k=1, n, uphi(k)); \\ Michel Marcus, Dec 19 2018

A349741 a(n) = Product_{k=1..n-1} phi(gcd(n,k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 1, 32, 1, 6, 256, 16, 1, 96, 1, 1024, 2304, 10, 1, 16384, 256, 12, 2304, 13824, 1, 524288, 1, 2048, 102400, 16, 5308416, 14155776, 1, 18, 589824, 134217728, 1, 63700992, 1, 1024000, 86973087744, 22, 1, 8589934592, 46656, 1310720
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2021

Keywords

Crossrefs

Cf. A000010, A001088, A029935, A029940, A046022 (positions of 1's), A051190.

Programs

  • Mathematica
    Table[Product[EulerPhi[GCD[n, k]], {k, 1, n - 1}], {n, 1, 50}]
  • PARI
    a(n) = prod(k=1, n-1, eulerphi(gcd(n, k))); \\ Michel Marcus, Nov 28 2021

Formula

a(n) = Product_{d|n, d < n} phi(d)^phi(n/d).

A379149 Specialization of the Elementary Symmetric Functions e(n) at x_i -> Euler phi(i).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 5, 2, 1, 6, 13, 12, 4, 1, 10, 37, 64, 52, 16, 1, 12, 57, 138, 180, 120, 32, 1, 18, 129, 480, 1008, 1200, 752, 192, 1, 22, 201, 996, 2928, 5232, 5552, 3200, 768, 1, 28, 333, 2202, 8904, 22800, 36944, 36512, 19968, 4608, 1, 32, 445, 3534, 17712, 58416, 128144, 184288, 166016, 84480, 18432
Offset: 0

Views

Author

Wouter Meeussen, Dec 16 2024

Keywords

Comments

Triangular table with alternating signed sum equal to 0 for n>0,
1
1,-1
1,-2,1
1,-4,5,-2
1,-6,13,-12,4
..
and with alternating signed weighted sum (first moment) also equal to 0 for n>1,
0
0,-1
0,-2,2
0,-4,10,-6
0,-6,26,-36,16
..
also when shifting the weights to start at 1,
1
1,-2
1,-4,3
1,-8,15,-8
1,-12,39,-48,20

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  5,   2;
  1,  6, 13,  12,   4;
  1, 10, 37,  64,  52,  16;
  1, 12, 57, 138, 180, 120, 32;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A002088.
Main diagonal gives A001088.
T(n,n-1) gives A067578.
Cf. A000010.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
           b(n-1)*(1+x*numtheory[phi](n)))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 16 2024
  • Mathematica
    Table[CoefficientList[Expand@Product[z EulerPhi[k]+1,{k,0,n}],z,n+1],{n,0,10}]
  • PARI
    row(n) = Vecrev(prod(k=1, n, 1 + 'x * eulerphi(k))) \\ Andrew Howroyd, Dec 16 2024

Formula

T(n,k) = [x^k] Product_{j=1..n} (1 + x*phi(j)). - Andrew Howroyd, Dec 16 2024

A092416 Determinant of the n X n matrix with entries gcd(X,Y)^gcd(X,Y).

Original entry on oeis.org

1, 1, 3, 78, 19656, 61405344, 2863085569344, 2357871215948696448, 39557911075122642360238080, 15325544184478930809864207383592960, 153255393906487099048546500580688904121221120
Offset: 0

Views

Author

Jon Perry, Mar 22 2004

Keywords

Examples

			for n = 3:
[1,1,1]
[1,4,1]
[1,1,27]
with det 78.
		

Crossrefs

Cf. A000178:super-factorials, A001088:product(A000010(i)).

Programs

  • PARI
    for(i=0,10,m=matrix(i,i,X,Y,gcd(X,Y)^gcd(X,Y));print1(","matdet(m)))

A187748 Determinant of the n X n matrix m_(i,j) = gcd(2^i-1, 2^j-1).

Original entry on oeis.org

1, 2, 12, 144, 4320, 233280, 29393280, 7054387200, 3555411148800, 3519857037312000, 7201627498340352000, 28950542543328215040000, 237104943429858081177600000, 3853903750508913251460710400000, 126138269754156730720309051392000000, 8234306249551351381421774874869760000000, 1079270520128695625562952032849179443200000000, 282311265573183686952254740944556962034483200000000
Offset: 1

Views

Author

Benoit Cloitre, Jan 03 2013

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#& ]; a[n_] := a[n] = If[n == 1, 1, a[n-1]*b[n]]; Array[a, 18] (* Jean-François Alcover, Dec 18 2015 *)
    Table[Det[Table[GCD[2^i-1,2^j-1],{i,n},{j,n}]],{n,20}] (* Harvey P. Dale, Sep 23 2022 *)
  • PARI
    a(n)=if(n<1,0,(1/2)*prod(k=1,n,sumdiv(k,d,moebius(d)*2^(k/d))))

Formula

a(n+1)/a(n) = A027375(n+1).
a(n) = (1/2)*Product_{k=1..n} Sum_{d|k} moebius(d)*2^(k/d).
a(n) ~ c * 2^(n*(n+1)/2), where c = 0.09412540696949274854160062245002977344042957885767746756023904566838799439... - Vaclav Kotesovec, Apr 19 2024
Previous Showing 21-30 of 33 results. Next