cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 146 results. Next

A179382 a(n) is the smallest period of pseudo-arithmetic progression with initial term 1 and difference 2n-1.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 6, 1, 4, 9, 2, 4, 10, 9, 14, 1, 5, 5, 18, 4, 10, 7, 5, 9, 10, 2, 26, 8, 9, 29, 30, 1, 6, 33, 11, 14, 3, 9, 15, 17, 27, 41, 2, 11, 4, 4, 3, 14, 24, 15, 50, 23, 4, 53, 18, 14, 14, 19, 3, 9, 55, 6, 50, 1, 7, 65, 8, 17, 34, 69, 23, 25, 14, 20, 74, 5, 10, 8, 26, 21
Offset: 1

Views

Author

Vladimir Shevelev, Jul 12 2010

Keywords

Comments

Let x,y be odd numbers. Denote <+> the following binary operation: x<+>y=A000265(x+y). Let a and d be odd numbers. We call a sequence of the form b, b<+>d, (b<+>d)<+>d,... a pseudo-arithmetic progression with the initial term b and the difference d. It is not difficult to prove that every pseudo-arithmetic progression is periodic sequence. This sequence lists smallest periods of pseudo-arithmetic progressions with initial term 1 and difference 2n-1, n=1,2,...
a(n) is the number of distinct odd residues contained in set {1,2,...,2^(2*n-2)} modulo 2*n-1. Thus 2*n-1 is in A001122 iff a(n)=n-1. - Vladimir Shevelev, Jul 18 2010

Examples

			For n=5, we have 1<+>9=5, 5<+>9=7, 7<+>9=1. Thus a(5)=3.
		

Crossrefs

Programs

  • Maple
    pseuAprog := proc(a,b) A000265(a+b) ; end proc:
    A179382 := proc(n) local p,k; p := [1] ; for k from 2 do a := pseuAprog( p[-1],2*n-1) ; if not a in p then p := [op(p),a] ; else return nops(p) ; end if; end do: end proc:
    seq(A179382(n),n=1..80) ;
    # R. J. Mathar, Jul 13 2010
  • Mathematica
    oddres[n_] := n/2^IntegerExponent[n, 2];
    a[n_] := Module[{d = 2n-1, k=1, t=1}, While[(t = oddres[t+d])>1, k++]; k];
    Array[a, 80] (* Jean-François Alcover, Apr 13 2020, translated from PARI *)
  • PARI
    oddres(n)=n>>valuation(n,2)
    a(n)=my(d=2*n-1,k=1,t=1);while((t=oddres(t+d))>1,k++);k
    \\ Charles R Greathouse IV, May 15 2013
    
  • Sage
    def A179382(n):
        N, o, s = 2*n-1, 1, 0
        while True:
            o = (N + o) >> valuation(N + o, 2)
            s = s + 1
            if o == 1: break
        return s
    print([A179382(n) for n in (1..72)]) # Peter Luschny, Oct 07 2017

Formula

a(n) = A001222(A292239(n-1)). - Antti Karttunen, Oct 04 2017

Extensions

Corrected and extended by R. J. Mathar, Jul 13 2010
Duplicated database lines removed by R. J. Mathar, Jul 23 2010

A071642 Numbers n such that x^n + x^(n-1) + x^(n-2) + ... + x + 1 is irreducible over GF(2).

Original entry on oeis.org

0, 1, 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178, 180, 196, 210, 226, 268, 292, 316, 346, 348, 372, 378, 388, 418, 420, 442, 460, 466, 490, 508, 522, 540, 546, 556, 562, 586, 612, 618, 652, 658, 660, 676, 700, 708, 756, 772
Offset: 1

Views

Author

N. J. A. Sloane, Jun 22 2002

Keywords

Comments

All such polynomials of odd degree > 1 are reducible over GF(2).
For n >= 2, a(n) = A001122(n-2) - 1 due to the relationship between cycles and irreducibility. - T. D. Noe, Sep 09 2003
n such that a type-1 optimal normal basis of GF(2^n) (over GF(2)) exists. The corresponding field polynomial is the all-ones polynomial x^n+x^(n-1)+...+1. - Joerg Arndt, Feb 25 2008
From Peter R. J. Asveld, Aug 13 2009: (Start)
a(n) is also the n-th S-prime (Shuffle prime)
For N>=2, the family of shuffle permutations is defined by
p(m,N) = 2m (mod N+1) if N is even,
p(m,N) = 2m (mod N) if N is odd and 1<=m
p(N,N) = N if N is odd.
N is S-prime if p(m,N) consists of a single cycle of length N.
So all S-primes are even.
N is S-prime iff p=N+1 is an odd prime number and +2 generates Z_p^* (the multiplicative group of Z_p).
a(n)/2 results in the Josephus_2-primes (A163782). Considered as sets a(n)/2 is the union of A163777 and A163779. If b(n) denotes the dual shuffle primes (A163776), then the union of a(n)/2 and b(n)/2 is equal to the Twist-primes or Queneau numbers (A054639); their intersection is equal to the Archimedes_0-primes (A163777). (End)
Conjecture: Terms >= 2 are numbers n such that P^n + P^(n-1) + P^(n-2) + ... + P + 1 is irreducible over GF(2), where P=x^2+x+1. - Luis H. Gallardo, Dec 23 2019

Examples

			For n=4 and n=6 we obtain the permutations (1 2 4 3) and (1 2 4)(3 6 5): 4 is S-prime, but 6 is not. [_Peter R. J. Asveld_, Aug 13 2009]
		

Crossrefs

Cf. A001122 (primes with primitive root 2).

Programs

  • Mathematica
    Join[{0, 1}, Reap[For[p = 2, p < 10^3, p = NextPrime[p], If[ MultiplicativeOrder[2, p] == p-1, Sow[p-1]]]][[2, 1]]] (* Jean-François Alcover, Dec 10 2015, adapted from PARI *)
  • PARI
    forprime(p=3,1000,if(znorder(Mod(2,p))==p-1,print1(p-1,", "))) /* Joerg Arndt, Jul 05 2011 */

Extensions

Extended by Robert G. Wilson v, Jun 24 2002
Initial terms of b-file corrected by N. J. A. Sloane, Aug 31 2009

A090866 Primes p == 1 (mod 4) such that (p-1)/4 is prime.

Original entry on oeis.org

13, 29, 53, 149, 173, 269, 293, 317, 389, 509, 557, 653, 773, 797, 1109, 1229, 1493, 1637, 1733, 1949, 1997, 2309, 2477, 2693, 2837, 2909, 2957, 3413, 3533, 3677, 3989, 4133, 4157, 4253, 4349, 4373, 4493, 4517, 5189, 5309, 5693, 5717, 5813, 6173, 6197
Offset: 1

Author

Benoit Cloitre, Feb 12 2004

Keywords

Comments

Same as Chebyshev's subsequence of the primes with primitive root 2, because Chebyshev showed that 2 is a primitive root of all primes p = 4*q+1 with q prime. If the sequence is infinite, then Artin's conjecture ("every nonsquare positive integer n is a primitive root of infinitely many primes q") is true for n = 2. - Jonathan Sondow, Feb 04 2013

References

  • Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
  • P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.

Programs

  • Magma
    f:=[n: n in [1..2000] | IsPrime(n) and IsPrime(4*n+1)]; [4*f[n] + 1: n in [1..50]]; // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    Select[Prime[Range[1000]], Mod[#, 4]==1 && PrimeQ[(#-1)/4] &] (* G. C. Greubel, Feb 08 2019 *)
  • PARI
    isok(p) = isprime(p) && !frac(q=(p-1)/4) && isprime(q); \\ Michel Marcus, Feb 09 2019

Formula

a(n) = 4*A023212(n) + 1.

A216371 Odd primes with one coach: primes p such that A135303((p-1)/2) = 1.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191, 197, 199, 211, 227, 239, 263, 269, 271, 293, 311, 317, 347, 349, 359, 367, 373, 379, 383, 389, 419, 421, 443, 461, 463, 467, 479, 487
Offset: 1

Author

Gary W. Adamson, Sep 05 2012

Keywords

Comments

Given that prime p has only one coach, the corresponding value of k in A003558 must be (p-1)/2, and vice versa. Using the Coach theorem of Jean Pedersen et al., phi(b) = 2 * c * k, with b odd. Let b = p, prime. Then phi(p) = (p-1), and k must be (p-1)/2 iff c = 1. Or, phi(p) = (p-1) = 2 * 1 * (p-1)/2.
Conjecture relating to odd integers: iff an integer is in the set A216371 and is either of the form 4q - 1 or 4q + 1, (q>0); then the top row of its coach (cf. A003558) is composed of a permutation of the first q odd integers. Examples: 11 is of the form 4q - 1, q = 3; with the top row of its coach [1, 5, 3]. 13 is of the form 4q + 1, q = 3; so has a coach of [1, 3, 5]. 37 is of the form 4q + 1, q = 9; so has a coach with the top row composed of a permutation of the first 9 odd integers: [1, 9, 7, 15, 11, 13, 3, 17, 5]. - Gary W. Adamson, Sep 08 2012
Odd primes p such that 2^m is not congruent to 1 or -1 (mod p) for 0 < m < (p-1)/2. - Charles R Greathouse IV, Sep 15 2012
These are also the odd primes a(n) for which there is only one periodic Schick sequence (see the reference, and also the Brändli and Beyne link, eq. (2) for the recurrence but using various inputs. See also a comment in A332439). This sequence has primitive period length (named pes in Schick's book) A003558((a(n)-1)/2) = A005034(a(n)) = A000010(a(n))/2 = (a(n) - 1)/2, for n >= 1. - Wolfdieter Lang, Apr 09 2020
From Jianing Song, Dec 24 2022: (Start)
Primes p such that the multiplicative order of 4 modulo p is (p-1)/2. Proof of equivalence: let ord(a,k) be the multiplicative of a modulo k.
If 2^m is not 1 or -1 (mod p) for 0 < m < (p-1)/2, then ord(2,p) is either p-1 or (p-1)/2. If ord(2,p) = p-1, then ord(4,p) = (p-1)/2. If ord(2,p) = (p-1)/2, then p == 3 (mod 4), otherwise 2^((p-1)/4) == -1 (mod p), so ord(4,p) = (p-1)/2.
Conversely, if ord(4,p) = (p-1)/2, then ord(2,p) = p-1, or ord(2,p) = (p-1)/2 and p == 3 (mod 4) (otherwise ord(4,p) = (p-1)/4). In the first case, (p-1)/2 is the smallest m > 0 such that 2^m == +-1 (mod p); in the second case, since (p-1)/2 is odd, 2^m == -1 (mod p) has no solution. In either case, so 2^m is not 1 or -1 (mod p) for 0 < m < (p-1)/2.
{(a(n)-1)/2} is the sequence of indices of fixed points of A053447.
A prime p is a term if and only if one of the two following conditions holds: (a) 2 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of 2 modulo p is (p-1)/2 (in this case, we have p == 7 (mod 8) since 2 is a quadratic residue modulo p). (End)
From Jianing Song, Aug 11 2023: (Start)
Primes p such that 2 or -2 (or both) is a primitive root modulo p. Proof of equivalence: if ord(2,p) = p-1, then clearly ord(4,p) = (p-1)/2. If ord(-2,p) = p-1, then we also have ord(4,p) = (p-1)/2. Conversely, suppose that ord(4,p) = (p-1)/2, then ord(2,p) = p-1 or (p-1)/2, and ord(-2,p) = p-1 or (p-1)/2. If ord(2,p) = ord(-2,p) = (p-1)/2, then we have that (p-1)/2 is odd and (-1)^((p-1)/2) == 1 (mod p), a contradiction.
A prime p is a term if and only if one of the two following conditions holds: (a) -2 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of -2 modulo p is (p-1)/2 (in this case, we have p == 3 (mod 8) since -2 is a quadratic residue modulo p). (End)
No terms are congruent to 1 modulo 8, since otherwise we would have 4^((p-1)/4) = (+-2)^((p-1)/2) == 1 (mod p). - Jianing Song, May 14 2024
The n-th prime A000040(n) is a term iff A376010(n) = 2. - Max Alekseyev, Sep 05 2024

Examples

			Prime 23 has a k value of 11 = (23 - 1)/2 (Cf. A003558(11)). It follows that 23 has only one coach (A135303(11) = 1). 23 is thus in the set. On the other hand 31 is not in the set since A135303(15) shows 3 coaches, with A003558(15) = 5.
13 is in the set since A135303(6) = 1; but 17 isn't since A135303(8) = 2.
		

References

  • P. Hilton and J. Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, 2010, Cambridge University Press, pages 260-264.
  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.

Crossrefs

Union of A001122 and A105874.
A105876 is the subsequence of terms congruent to 3 modulo 4.
Complement of A268923 in the set of odd primes.
Cf. A082654 (order of 4 mod n-th prime), A000010, A000040, A003558, A005034, A053447, A054639, A135303, A364867, A376010.

Programs

  • Maple
    isA216371 := proc(n)
        if isprime(n) then
            if A135303((n-1)/2) = 1 then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    A216371 := proc(n)
        local p;
        if n = 1 then
            3;
        else
            p := nextprime(procname(n-1)) ;
            while true do
                if isA216371(p) then
                    return p;
                end if;
                p := nextprime(p) ;
            end do:
        end if;
    end proc:
    seq(A216371(n),n=1..40) ; # R. J. Mathar, Dec 01 2014
  • Mathematica
    Suborder[a_, n_] := If[n > 1 && GCD[a, n] == 1, Min[MultiplicativeOrder[a, n, {-1, 1}]], 0]; nn = 150; Select[Prime[Range[2, nn]], EulerPhi[#]/(2*Suborder[2, #]) == 1 &] (* T. D. Noe, Sep 18 2012 *)
    f[p_] := Sum[Cos[2^n Pi/((2 p + 1))], {n, p}]; 1 + 2 * Select[Range[500], Reduce[f[#] == -1/2, Rationals] &]; (* Gerry Martens, May 01 2016 *)
  • PARI
    is(p)=for(m=1,p\2-1, if(abs(centerlift(Mod(2,p)^m))==1, return(0))); p>2 && isprime(p) \\ Charles R Greathouse IV, Sep 18 2012
    
  • PARI
    is(p) = isprime(p) && (p>2) && znorder(Mod(4,p)) == (p-1)/2 \\ Jianing Song, Dec 24 2022

Formula

a(n) = 2*A054639(n) + 1. - L. Edson Jeffery, Dec 18 2012

A216838 Odd primes for which 2 is not a primitive root.

Original entry on oeis.org

7, 17, 23, 31, 41, 43, 47, 71, 73, 79, 89, 97, 103, 109, 113, 127, 137, 151, 157, 167, 191, 193, 199, 223, 229, 233, 239, 241, 251, 257, 263, 271, 277, 281, 283, 307, 311, 313, 331, 337, 353, 359, 367, 383, 397, 401, 409, 431, 433, 439, 449, 457, 463, 479
Offset: 1

Author

V. Raman, Sep 17 2012

Keywords

Comments

Alternately, for these primes p, the polynomial (x^p+1)/(x+1) is reducible over GF(2).
The prime p belongs to this sequence if and only if A002326((p-1)/2) != (p-1). If A002326((p-1)/2) = (p-1), then the prime p belongs to the sequence A001122. - V. Raman, Dec 01 2012
The only primitive root modulo 2 is 1. See A060749. Hence 2 should be added to this sequence in order to obtain the complement of A001122. - Wolfdieter Lang, May 19 2014

Crossrefs

Cf. A002326 (multiplicative order of 2 mod 2n+1)
Cf. A001122 (Primes for which 2 is a primitive root)
Cf. A115586 (Primes for which 2 is neither a primitive root nor a quadratic residue).

Programs

  • Maple
    select(t -> isprime(t) and numtheory[order](2,t) <> t-1, [seq](2*i+1,i=1..1000)); # Robert Israel, May 20 2014
  • Mathematica
    Select[Prime[Range[2, 100]], PrimitiveRoot[#] =!= 2 &] (* T. D. Noe, Sep 19 2012 *)
  • PARI
    forprime(p=3, 1000, if(znorder(Mod(2,p))!=p-1, print(p)))
    
  • PARI
    forprime(p=3, 1000, if(factormod((x^p+1)/(x+1), 2, 1)[1, 1]!=(p-1), print(p)))

Extensions

Name corrected by Wolfdieter Lang, May 19 2014

A001123 Primes with 3 as smallest primitive root.

Original entry on oeis.org

7, 17, 31, 43, 79, 89, 113, 127, 137, 199, 223, 233, 257, 281, 283, 331, 353, 401, 449, 463, 487, 521, 569, 571, 593, 607, 617, 631, 641, 691, 739, 751, 809, 811, 823, 857, 881, 929, 953, 977, 1013, 1039, 1049, 1063, 1087, 1097, 1193, 1217
Offset: 1

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 57.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001122, A001124, etc.
Cf. A019334.

Programs

  • Mathematica
    Prime[ Select[ Range[200], PrimitiveRoot[ Prime[ # ]] == 3 & ]]
    (* or *)
    Select[ Prime@Range@200, PrimitiveRoot@# == 3 &] (* Robert G. Wilson v, May 11 2001 *)
  • PARI
    forprime(p=3, 1000, if(znorder(Mod(2, p))!=p-1&&znorder(Mod(3, p))==p-1, print1(p,", ")));
    
  • PARI
    { n=0; forprime (p=3, 99999, if (znorder(Mod(2,p))!=p-1 && znorder(Mod(3,p))==p-1, n++; write("b001123.txt", n, " ", p); if (n>=1000, break) ) ) } \\ Harry J. Smith, Jun 14 2009
    
  • Python
    from itertools import islice
    from sympy import nextprime, is_primitive_root
    def A001123_gen(): # generator of terms
        p = 3
        while (p:=nextprime(p)):
            if not is_primitive_root(2,p) and is_primitive_root(3,p):
                yield p
    A001123_list = list(islice(A001123_gen(),30)) # Chai Wah Wu, Feb 13 2023

Extensions

More terms from Robert G. Wilson v, May 10 2001

A023048 Smallest prime having least positive primitive root n, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 7, 0, 23, 41, 71, 0, 0, 313, 643, 4111, 457, 1031, 439, 0, 311, 53173, 191, 107227, 409, 3361, 2161, 533821, 0, 12391, 0, 133321, 15791, 124153, 5881, 0, 268969, 48889, 64609, 0, 36721, 55441, 166031, 1373989, 156601, 2494381, 95471, 71761, 95525767
Offset: 1

Keywords

Comments

a(n) = 0 iff n is a perfect power m^k, m >= 1, k >= 2 (i.e., a member of A001597).
Of course if n is a perfect power then a(n) = 0, but it seems that the other direction is true only assuming the generalized Artin's conjecture. See the link from Tomás Oliveira e Silva below. - Jianing Song, Jan 22 2019

Examples

			a(2) = 3, since 3 has 2 as smallest positive primitive root and no prime p < 3 has 2 as smallest positive primitive root.
a(24) = 533821, since prime 533821 has 24 as smallest positive primitive root and no prime p < 533821 has 24 as smallest positive primitive root.
		

References

  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.

Crossrefs

Indices of the primes: A066529.
For records see A133433. See A133432 for a version without the 0's.

Programs

  • Mathematica
    t = Table[0, {100}]; Do[a = PrimitiveRoot@Prime@n; If[a < 101 && t[[a]] == 0, t[[a]] = n], {n, 10^6}]; Unprotect[Prime]; Prime[0] = 0; Prime@t; Clear[Prime]; Protect[Prime] (* Robert G. Wilson v, Dec 15 2005 *)
  • Python
    from sympy import nextprime, perfect_power, primitive_root
    def a(n):
        if perfect_power(n): return 0
        p = 2
        while primitive_root(p) != n: p = nextprime(p)
        return p
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Feb 13 2023
    
  • Python
    # faster version for initial segment of sequence
    from itertools import count, islice
    from sympy import nextprime, perfect_power, primitive_root
    def agen(): # generator of terms
        p, adict, n = 2, {None: 0}, 1
        for k in count(1):
            v = primitive_root(p)
            if v not in adict:
                adict[v] = p
            if perfect_power(n): adict[n] = 0
            while n in adict: yield adict[n]; n += 1
            p = nextprime(p)
    print(list(islice(agen(), 40))) # Michael S. Branicky, Feb 13 2023

Formula

a(n) = min { prime(k) | A001918(k) = n } U {0} = A000040(A066529(n)) (or zero). - M. F. Hasler, Jun 01 2018

Extensions

Comment corrected by Christopher J. Smyth, Oct 16 2013

A292270 Sum of all partial fractions in the algorithm used for calculation of A002326(n).

Original entry on oeis.org

1, 1, 4, 1, 13, 25, 36, 1, 38, 81, 12, 26, 124, 121, 196, 1, 103, 73, 324, 42, 224, 175, 91, 147, 232, 14, 676, 170, 303, 841, 900, 1, 264, 1089, 385, 364, 93, 301, 585, 563, 1093, 1681, 44, 355, 152, 118, 83, 484, 1254, 763, 2500, 1043, 156, 2809, 996, 564, 952, 931, 71, 387, 3325, 176, 3124, 1, 649, 4225, 554, 1081
Offset: 0

Author

Keywords

Comments

This sequence gives important additional insight into the algorithm for the calculation of A002326 (see A179680 for its description). Let us estimate how many steps are required before (the first) 1 will appear. Note that all partial fractions (which are indeed, integers) are odd residues modulo 2*n+1 from the interval [1,2*n-1]. So, if there is no repetition, then the number of steps does not exceed n. Suppose then that there is a repetition before the appearance of 1. Then for an odd residue k from [1, 2*n-1], 2^m_1 == 2^m_2 == k (mod 2*n+1) such that m_2 > m_1. But then 2^(m_2-m_1) == 1 (mod 2*n+1). So, since m_2 - m_1 < m_2, it means that 1 should appear earlier than the repetition of k, which is a contradiction. So the number of steps <= n. For example, for n=9, 2*n+1 = 19, we have exactly 9 steps with all other odd residues <= 17 modulo 19 appearing before the final 1: 5, 3, 11, 15, 17, 9, 7, 13, 1.
A001122 gives the odd numbers k such that a((k-1)/2) = A000290((k-1)/2).

Examples

			Let n = 9. According to the comment, a(9) = 5 + 3 + 11 + 15 + 17 + 9 + 7 + 13 + 1 = 81.
		

Crossrefs

Cf. A000225 (gives the positions of ones), A292938 (of squares), A292939 (and the corresponding odd numbers), A292940 (odd numbers corresponding to squares larger than one), A292379 (odd numbers corresponding to squares less than n^2).

Programs

  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A006519(n) = 2^valuation(n, 2);
    A292270(n) = { my(x = n+n+1, z = ((1+x)/A006519(1+x)), m = A000265(1+x)); while(m!=1, z += ((x+m)/A006519(x+m)); m = A000265(x+m)); z; };
    
  • Scheme
    (define (A292270 n) (let ((x (+ n n 1))) (let loop ((z (/ (+ 1 x) (A006519 (+ 1 x)))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) z (loop (+ z (/ (+ x m) (A006519 (+ x m)))) m))))))

Formula

For all n >= 1, A000196(a((A001122(1+n)-1)/2)) = (A001122(1+n)-1)/2, in other words, a(A163782(n)) = A000290(A163782(n)).

A101208 Smallest odd prime p such that n = (p - 1) / ord_p(2).

Original entry on oeis.org

3, 7, 43, 113, 251, 31, 1163, 73, 397, 151, 331, 1753, 4421, 631, 3061, 257, 1429, 127, 6043, 3121, 29611, 1321, 18539, 601, 15451, 14327, 2971, 2857, 72269, 3391, 683, 2593, 17029, 2687, 42701, 11161, 13099, 1103, 71293, 13121, 17467, 2143, 83077, 25609, 5581
Offset: 1

Author

Leigh Ellison (le(AT)maths.gla.ac.uk), Dec 14 2004

Keywords

Comments

First time n appears is given in A001917.
Smallest p (let it be the k-th prime) such that A001917(k) = n, or the smallest prime which has ratio n in base 2.
First cyclic number (in base 2) of n-th degree (or n-th order): the reciprocals of these numbers belong to one of n different cycles. Each cycle has (a(n) - 1)/n digits.
Conjecture: a(n) is defined for all n.
Recursive by indices: (See A054471)
1, 3, 43, 83077, ...
2, 7, 1163, ...
4, 113, 257189, ...
5, 251, 6846277, ...
6, 31, 683, ...
8, 73, 472019, ...
9, 397, 13619483, ...
10, 151, 349717, ...
...
The records for the ratio in base 2 are: 1, 2, 6, 8, 18, 24, 31, 38, 72, 105, 129, 630, 1285, 1542, 2048, ..., the primes are: 3, 7, 31, 73, 127, 601, 683, 1103, 1801, 2731, 5419, 8191, 43691, 61681, 65537, ...
(Updated by Eric Chen, Jun 01 2015)

Crossrefs

Cf. A001122, A115591, A001133, A001134, A001135, A001136, A152307, A152308, A152309, A152310, A152311, which are sequences of primes p where the period of the reciprocal in base 2 is (p-1)/n for n=1 to 11.

Programs

  • Mathematica
    f[n_Integer] := Block[{k = 1, p}, While[p = k*n + 1; ! PrimeQ[p] || p != 1 + n*MultiplicativeOrder[2, p] || p = 2, k++]; p]; Array[f, 128] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a(n) = {p=3; ok = 0; until(ok, if (n == (p-1)/znorder(Mod(2, p)), ok = 1, p = nextprime(p+1));); return (p);} \\ Michel Marcus, Jun 27 2013

A105874 Primes for which -2 is a primitive root.

Original entry on oeis.org

5, 7, 13, 23, 29, 37, 47, 53, 61, 71, 79, 101, 103, 149, 167, 173, 181, 191, 197, 199, 239, 263, 269, 271, 293, 311, 317, 349, 359, 367, 373, 383, 389, 421, 461, 463, 479, 487, 503, 509, 541, 557, 599, 607, 613, 647, 653, 661, 677, 701, 709, 719, 743, 751, 757, 773, 797
Offset: 1

Author

N. J. A. Sloane, Apr 24 2005

Keywords

Comments

Also primes for which (p-1)/2 (==-1/2 mod p) is a primitive root. [Joerg Arndt, Jun 27 2011]

Programs

  • Maple
    with(numtheory); f:=proc(n) local t1,i,p; t1:=[]; for i from 1 to 500 do p:=ithprime(i); if order(n,p) = p-1 then t1:=[op(t1),p]; fi; od; t1; end; f(-2);
  • Mathematica
    pr=-2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *)
    a[p_,q_]:=Sum[2 Cos[2^n Pi/((2 q+1) (2 p+1))], {n,1,2 q p}];
    Select[Range[400], Reduce[a[#, 1] == 1, Integers] &];
    2 % + 1 (* Gerry Martens, Apr 28 2015 *)
  • PARI
    forprime(p=3,10^4,if(p-1==znorder(Mod(-2,p)),print1(p", "))); /* Joerg Arndt, Jun 27 2011 */
    
  • Python
    from sympy import n_order, nextprime
    from itertools import islice
    def A105874_gen(startvalue=3): # generator of terms >= startvalue
        p = max(startvalue-1,2)
        while (p:=nextprime(p)):
            if n_order(-2,p) == p-1:
                yield p
    A105874_list = list(islice(A105874_gen(),20)) # Chai Wah Wu, Aug 11 2023

Formula

Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime belonging to this sequence when a(p,1)==1. - Gerry Martens, May 21 2015
Previous Showing 21-30 of 146 results. Next