cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001122 Primes with primitive root 2.

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797
Offset: 1

Views

Author

Keywords

Comments

Artin conjectured that this sequence is infinite.
Conjecture: sequence contains infinitely many pairs of twin primes. - Benoit Cloitre, May 08 2003
Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis, it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed, exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.
It seems that this sequence consists of A050229 \ {1,2}.
Primes p such that 1/p, when written in base 2, has period p-1, which is the greatest period possible for any integer.
Positive integer 2*m-1 is in the sequence iff A179382(m)=m-1. - Vladimir Shevelev, Jul 14 2010
These are the odd primes p for which the polynomial 1+x+x^2+...+x^(p-1) is irreducible over GF(2). - V. Raman, Sep 17 2012 [Corrected by N. J. A. Sloane, Oct 17 2012]
Prime(n) is in the sequence if (and conjecturally only if) A133954(n) = prime(n). - Vladimir Shevelev, Aug 30 2013
Pollack shows that, on the GRH, that there is some C such that a(n+1) - a(n) < C infinitely often (in fact, 1 can be replaced by any positive integer). Further, for any m, a(n), a(n+1), ..., a(n+m) are consecutive primes infinitely often. - Charles R Greathouse IV, Jan 05 2015
From Jianing Song, Apr 27 2019: (Start)
All terms are congruent to 3 or 5 modulo 8. If we define
Pi(N,b) = # {p prime, p <= N, p == b (mod 8)};
Q(N) = # {p prime, p <= N, p in this sequence},
then by Artin's conjecture, Q(N) ~ C*N/log(N) ~ 2*C*(Pi(N,3) + Pi(N,5)), where C = A005596 is Artin's constant.
Conjecture: if we further define
Q(N,b) = # {p prime, p <= N, p == b (mod 8), p in this sequence},
then we have:
Q(N,3) ~ (1/2)*Q(N) ~ C*Pi(N,3);
Q(N,5) ~ (1/2)*Q(N) ~ C*Pi(N,5). (End)
Conjecture: for a prime p > 5, p has primitive root 2 iff p == +-3 (mod 8) divides 2^k + 3 for some k < p - 1 and divides 2^m + 5 for some m < p - 1. It seems that all primes of the form 2^k + 3 for k <> 2 (A057732) have primitive root 2. - Thomas Ordowski, Nov 27 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I; see p. 221.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 169.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 56.
  • Lehmer, D. H. and Lehmer, Emma; Heuristics, anyone? in Studies in mathematical analysis and related topics, pp. 202-210, Stanford Univ. Press, Stanford, Calif., 1962.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 20.
  • D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002326 for the multiplicative order of 2 mod 2n+1. (Alternatively, the least positive value of m such that 2n+1 divides 2^m-1).
Cf. A216838 (Odd primes for which 2 is not a primitive root).

Programs

  • Mathematica
    Select[ Prime@Range@200, PrimitiveRoot@# == 2 &] (* Robert G. Wilson v, May 11 2001 *)
    pr = 2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == # - 1 &] (* N. J. A. Sloane, Jun 01 2010 *)
  • PARI
    forprime(p=3, 1000, if(znorder(Mod(2, p))==(p-1), print1(p,", "))); \\ [corrected by Michel Marcus, Oct 08 2014]
    
  • Python
    from itertools import islice
    from sympy import nextprime, is_primitive_root
    def A001122_gen(): # generator of terms
        p = 2
        while (p:=nextprime(p)):
            if is_primitive_root(2,p):
                yield p
    A001122_list = list(islice(A001122_gen(),30)) # Chai Wah Wu, Feb 13 2023

Formula

Delta(a(n),2^a(n)*x) = a(n)*Delta(a(n),2*x), where Delta(k,x) is the difference between numbers of evil(A001969) and odious(A000069) integers divisible by k in interval [0,x). - Vladimir Shevelev, Aug 30 2013
For n >= 2, a(n) = 1 + 2*A163782(n-1). - Antti Karttunen, Oct 07 2017

A001124 Primes with 5 as smallest primitive root.

Original entry on oeis.org

23, 47, 73, 97, 103, 157, 167, 193, 263, 277, 307, 383, 397, 433, 503, 577, 647, 673, 683, 727, 743, 863, 887, 937, 967, 983, 1033, 1093, 1103, 1153, 1163, 1223, 1367, 1487, 1543, 1583, 1607, 1777, 1823, 1847, 1933, 1993, 2003, 2017, 2063, 2087, 2113, 2203, 2207
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 57.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001122, A001123, A001125, etc.

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`; Prime[ Select[ Range[200], PrimitiveRoot[ Prime[ # ] ] == 5 & ] ]
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@300, PrimitiveRoot@# == 5 &] (* Robert G. Wilson v, May 11 2001 *)
    Select[Prime[Range[350]],PrimitiveRoot[#]==5&] (* The PrimitiveRoot function is now part of Mathematica's core, so no add-in needs to be loaded before calling it *) (* Harvey P. Dale, Dec 06 2014 *)
  • Python
    from itertools import islice
    from sympy import nextprime, primitive_root
    def A001124_gen(): # generator of terms
        p = 5
        while (p:=nextprime(p)):
            if primitive_root(p)==5:
                yield p
    A001124_list = list(islice(A001124_gen(),30)) # Chai Wah Wu, Feb 13 2023

Extensions

More terms from Robert G. Wilson v, May 10 2001

A066529 a(n) is the least index such that the least primitive root of the a(n)-th prime is n, or zero if no such prime exists.

Original entry on oeis.org

1, 2, 4, 0, 9, 13, 20, 0, 0, 65, 117, 566, 88, 173, 85, 0, 64, 5426, 43, 10217, 80, 474, 326, 44110, 0, 1479, 0, 12443, 1842, 11662, 775, 0, 23559, 5029, 6461, 0, 3894, 5629, 15177, 105242, 14401, 182683, 9204, 7103, 5518399, 23888, 24092, 42304997, 0, 1455704, 27848, 12107, 14837, 205691645, 38451, 12102037, 39370, 28902, 57481, 56379, 90901, 53468, 5918705, 0, 732055, 1738826, 242495, 265666, 10523, 388487, 260680
Offset: 1

Views

Author

Wouter Meeussen, Jan 06 2002

Keywords

Comments

The corresponding primes are in A023048.
For n < 150, only a(108) is presently unknown. - Robert G. Wilson v, Jan 03 2006

Examples

			a(6) = 13 because Prime[13] = 41 is the least prime with least primitive root = 6
		

Crossrefs

Programs

  • Mathematica
    big = Table[ p = Prime[ n ]; PrimitiveRoot[ p ], {n, 1, 1000000} ]; Flatten[ Table[ Position[ big, n, 1, 1 ]/.{}-> 0, {n, 79} ] ] (* First load package NumberTheory`NumberTheoryFunctions` *)
    (* first load package *) << NumberTheory`NumberTheoryFunctions` (* then do *) t = Table[0, {100}]; Do[a = PrimitiveRoot@Prime@n; If[a < 101 && t[[a]] == 0, t[[a]] = n], {n, 10^6}]; t (* Robert G. Wilson v, Dec 15 2005 *)

Formula

a(n) = 0 iff n is a perfect power (A001597) > 1. - Robert G. Wilson v, Jan 03 2006
a(n) = min { k | A001918(k) = n } U {0} = A000720(A023048(n)) (or zero). - M. F. Hasler, Jun 01 2018

Extensions

Edited by Dean Hickerson, Jan 14 2002
Further terms from Robert G. Wilson v, Jan 03 2006

A001125 Primes with 6 as smallest primitive root.

Original entry on oeis.org

41, 109, 151, 229, 251, 271, 367, 733, 761, 971, 991, 1069, 1289, 1303, 1429, 1471, 1759, 1789, 1811, 1879, 2411, 2441, 2551, 2749, 2791, 3061, 3079, 3109, 3229, 3251, 3301, 3319, 3967, 4211, 4549, 4721, 4783, 4909, 4931, 4951, 5101, 5167, 5581, 5791
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 11.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001122, A001123, A001124, etc.

Programs

  • Mathematica
    Prime[ Select[ Range[1000], PrimitiveRoot[ Prime[ # ] ] == 6 & ] ]
    (* or *)
    Select[ Prime@Range@760, PrimitiveRoot@# == 6 &] (* Robert G. Wilson v, May 11 2001 *)

Extensions

More terms from Robert G. Wilson v, May 10 2001

A072190 Indices of primes with primitive root 2.

Original entry on oeis.org

2, 3, 5, 6, 8, 10, 12, 16, 17, 18, 19, 23, 26, 28, 32, 34, 35, 38, 40, 41, 42, 45, 47, 49, 57, 62, 66, 69, 70, 74, 75, 77, 81, 82, 86, 89, 91, 94, 97, 99, 100, 101, 102, 103, 107, 112, 114, 119, 120, 121, 123, 126, 127, 134, 137, 138, 139, 142, 144, 145, 147
Offset: 1

Views

Author

Miklos Kristof, Jul 02 2002

Keywords

Comments

Artin conjectured that this sequence is infinite (this is the famous Artin Conjecture).

Examples

			8 is an element of the sequence: 19 the 8th prime and 2 is primitive root of 19. 9 is not element of the sequence, since 23 is the 9th prime and 2 is not primitive root of 23.
		

References

  • M. Abramowitz and I.A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996. see p. 169
  • L. Huber, manuscripts on Group Theory and Number Theory, 1990-1995

Crossrefs

Programs

  • Mathematica
    Select[Range[300], MultiplicativeOrder[2, Prime[#]] == Prime[#] - 1 &] (* T. D. Noe, Apr 16 2014 *)

Extensions

Edited by N. J. A. Sloane, Apr 11 2009
Extended by T. D. Noe, Apr 16 2014

A225888 Primes p such that neither 2 nor 3 are primitive roots, but together 2 and 3 generate the nonzero residues mod p.

Original entry on oeis.org

41, 103, 109, 151, 157, 229, 251, 271, 277, 367, 397, 683, 733, 761, 967, 971, 991, 1051, 1069, 1163, 1181, 1289, 1303, 1429, 1471, 1543, 1759, 1783, 1789, 1811, 1879, 2003, 2297, 2411, 2441, 2551, 2749, 2791, 2887, 2917, 3061, 3079, 3109, 3229, 3251, 3301, 3319
Offset: 1

Views

Author

John L. Drost, May 19 2013

Keywords

Examples

			2 has multiplicative order 20 mod 41, 3 has order 8 mod 41 so neither is a primitive root. The subgroup 2 and 3 generate together will have order lcm(20,8) = 40 so 2 and 3 generate all nonzero residues.
		

Crossrefs

Programs

  • PARI
    is(n)=if(n>40 && isprime(n), my(a=znorder(Mod(2,n)),b); if(a==n-1,return(0)); b=znorder(Mod(3,n)); bCharles R Greathouse IV, May 19 2013

A241041 Differences between primes having smallest primitive root 3.

Original entry on oeis.org

10, 14, 12, 36, 10, 24, 14, 10, 62, 24, 10, 24, 24, 2, 48, 22, 48, 48, 14, 24, 34, 48, 2, 22, 14, 10, 14, 10, 50, 48, 12, 58, 2, 12, 34, 24, 48, 24, 24, 36, 26, 10, 14, 24, 10, 96, 24, 14, 48, 48, 34, 48, 14, 10, 14, 12, 22, 72, 14, 12, 22, 12, 14, 36, 34, 2
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Cf. A001123 (primes having smallest primitive root 3).

Programs

  • Mathematica
    Differences[Select[Prime[Range[1000]], PrimitiveRoot[#] == 3 &]]

A241046 Primes having primitive roots 2, 3, 5, 7, and 11.

Original entry on oeis.org

173, 293, 677, 2083, 2477, 3533, 3797, 4133, 4157, 4373, 4603, 4637, 5477, 5717, 5923, 6173, 7013, 9173, 9533, 9677, 10853, 11587, 12437, 13037, 13397, 13613, 13877, 14717, 14957, 15077, 15413, 16253, 17093, 17573, 17597, 18413, 18773, 18917, 19157, 19997
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[p_, n_] := MultiplicativeOrder[p, n] == n - 1; Select[Prime[Range[2300]], fQ[2, #] && fQ[3, #] && fQ[5, #] && fQ[7, #] && fQ[11, #] &]

A280930 Primes for which 3 is not the smallest primitive root.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 23, 29, 37, 41, 47, 53, 59, 61, 67, 71, 73, 83, 97, 101, 103, 107, 109, 131, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 211, 227, 229, 239, 241, 251, 263, 269, 271, 277, 293, 307, 311, 313, 317, 337, 347, 349, 359, 367, 373
Offset: 1

Views

Author

Vincenzo Librandi, Jan 11 2017

Keywords

Crossrefs

Complement of A001123.

Programs

  • Mathematica
    Select[Prime[Range[1, 100]], PrimitiveRoot[#] =!= 3 &]
    Select[Prime[Range[100]],PrimitiveRoot[#,1]!=3&] (* Harvey P. Dale, Jan 01 2018 *)

A219461 Primes p such that 2^p - 1 is a prime with primitive root 3.

Original entry on oeis.org

3, 5, 7, 17, 19, 89, 107, 521, 2203, 2281, 4253
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 20 2012

Keywords

Comments

If A096393(n) = 3, then A000043(n) belongs to this sequence.
2^a(n) - 1 is in A001123.
a(12) >= 21701. - Max Alekseyev, Feb 08 2024

Crossrefs

Subsequence of A000043.

Programs

  • Mathematica
    Select[Prime@Range[98], PrimitiveRoot[2^# - 1] == 3 &]

Extensions

a(9)-a(11) from Max Alekseyev, Feb 07 2024
Showing 1-10 of 10 results.