cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 116 results. Next

A215016 Decimal expansion of the product of 1 - 1/2^2^n over all n >= 0.

Original entry on oeis.org

3, 5, 0, 1, 8, 3, 8, 6, 5, 4, 3, 9, 5, 6, 9, 6, 0, 8, 8, 6, 6, 5, 5, 4, 5, 2, 6, 9, 6, 6, 1, 7, 8, 8, 6, 7, 6, 4, 2, 0, 8, 6, 5, 0, 2, 1, 7, 6, 9, 2, 1, 7, 6, 9, 7, 0, 6, 4, 8, 2, 3, 3, 8, 6, 0, 4, 8, 2, 5, 6, 3, 0, 5, 3, 6, 8, 6, 9, 6, 4, 4, 1
Offset: 0

Views

Author

Keywords

Comments

Can be used to efficiently compute A014571: A014571 = 1/2 - (1/4) * A215016.

Examples

			0.35018386543956960886655452696617886764208650217692176970648233860482563...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[NProduct[1 - 1/2^2^n, {n, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* Alonso del Arte, Jul 31 2012 *)
  • PARI
    prodinf(n=0,1-1.>>2^n)

Formula

Equals Sum_{n>=0} A106400(n)/2^n. - Robert FERREOL, Jan 10 2022
From Amiram Eldar, Feb 19 2024: (Start)
Equals Product_{n>=0} (1 - 1/A001146(n)).
Equals 2/A258716.
Equals 1/(3/2 + A258714). (End)

A334866 a(0) = 1, and then after, a(2n) = a(n)^2, a(2n+1) = A334747(a(n)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 9, 6, 256, 32, 64, 12, 81, 18, 36, 5, 65536, 512, 1024, 48, 4096, 128, 144, 24, 6561, 162, 324, 27, 1296, 72, 25, 10, 4294967296, 131072, 262144, 768, 1048576, 2048, 2304, 96, 16777216, 8192, 16384, 192, 20736, 288, 576, 20, 43046721, 13122, 26244, 243, 104976, 648, 729, 54, 1679616, 2592, 5184, 108, 625, 50, 100, 15
Offset: 0

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

This irregular table can be represented as a binary tree. Each child to the left is obtained by squaring the parent, and each child to the right is obtained by applying A334747 to the parent:
1
|
...................2...................
4 3
16......../ \........8 9......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
256 32 64 12 81 18 36 5
65536 512 1024 48 4096 128 144 24 6561 162 324 27 1296 72 25 10
etc.
This is the mirror image of the tree in A334860.

Crossrefs

Cf. A334865 (inverse permutation), A334860 (mirror image).
Composition of permutations A005940 and A225546.
Cf. A001146 (left edge of the tree), A019565 (right edge), A334110 (the left children of the right edge).

Programs

Formula

a(0) = 1, and then after, a(2n) = a(n)^2, a(2n+1) = A334747(a(n)).
a(n) = A225546(A005940(1+n)).
For all n >= 0, A048675(a(n)) = A087808(n).

A055777 a(n) = 3^(3^n).

Original entry on oeis.org

3, 27, 19683, 7625597484987, 443426488243037769948249630619149892803
Offset: 0

Views

Author

Henry Bottomley, Jul 12 2000

Keywords

Comments

Next term is too big to include.
a(n+1) = a(n) written in base 3 and read as if in base 27 (and recorded in base 10).
Number of distinct n-ary operators in a ternary logic. - Ross Drewe, Feb 13 2008
The next term has 116 digits. - Harvey P. Dale, Mar 28 2019

Crossrefs

Programs

Formula

a(n) = a(n-1)^3.
Sum_{n>=0} 1/a(n) = A383817. - Amiram Eldar, May 16 2025

A100441 a(n) is the denominator of f(n) where f(1) = 2 and f(n+1) is the solution of x + Sum_{i=1..n} f(i) = x * Product_{i=1..n} f(i).

Original entry on oeis.org

1, 1, 3, 13, 217, 57073, 3811958497, 16605534578235736513, 309708098978072051970763989442580255617, 106322990835084829467725909226560893968664147958670035553130958199430801942273
Offset: 1

Views

Author

Gilbert Boily (sgbl(AT)escape.ca), Nov 21 2004, Sep 03 2007

Keywords

Comments

Let E(0) = x + 1, let E(n+1) = 1 - E(n) + E(n)^2. Let e(n) = discrim(E(n),x) and let f(n) = e(n+1)/e(n)^2. Then f(1,2,3,...) = -3,13,217,57073,381195849,... which looks like this sequence (I do not have a proof yet). - Daniel R. L. Brown (dbrown(AT)certicom.com), Nov 18 2005
This sequence gives the next number in a sequence where the sum and the product of the terms of the sequence are equal.
It happens that the sum or product of the terms of this sequence match A001146 for the numerator of the sum or product and A076628 for the denominator of the sum or product of the sequence.
Let g(x) = x^2 - x + 1 be the map producing Sylvester's sequence A000058. Then for n >= 0, g^n(1/2) = 1/f(n+2), where g^n is the n-th iterate of g, so a(n+2) is the numerator of g^n(1/2). - Curtis Bechtel, Apr 05 2024

Examples

			2, 2, 4/3, 16/13, 256/217, 65536/57073, 4294967296/3811958497, 18446744073709551616/16605534578235736513, ... = A001146/A100441 (essentially).
		

Crossrefs

Programs

  • Magma
    I:=[1,3]; [1] cat  [n le 2 select I[n] else 2^(2^(n-1))-2^(2^(n-2))*Self(n-1)+Self(n-1)^2: n in [1..10]]; // Vincenzo Librandi, Jun 13 2015
    
  • Maple
    f:=proc(n) option remember; local i,k,k1,k2; if n = 1 then return(2); fi; k:=mul(f(i),i=1..n-1); k1:=numer(k); k2:=denom(k); k1/(k1-k2); end;
    f:=n-> if n=1 or n=2 then 2 else f(n-1)^2/(f(n-1)^2-f(n-1)+1) fi; # Robert FERREOL, Jun 12 2015
  • Mathematica
    f[n_] := f[n] = (frac = Product[f[i], {i, 1, n-1}]; p = Numerator[frac]; q = Denominator[frac]; p/(p-q)); f[1] = 2; (* or, after Robert FERREOL *) f[n_] := f[n] = If[n == 1 || n == 2, 2, f[n-1]^2/(f[n-1]^2-f[n-1]+1)]; Table[f[n], {n, 1, 10}] // Denominator (* Jean-François Alcover, Sep 19 2012, updated Jun 15 2015 *)
  • PARI
    {a(n) = my(s, t); if( n<3, n>0, t = a(n-1); s = 2^(2^(n-3)); s*s -s*t +t*t)}; /* Michael Somos, Aug 05 2017 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A100441
        if (n<3): return 2*n-1
        else: return 2^(2^(n-1)) - 2^(2^(n-2))*a(n-1) + a(n-1)^2
    [1]+[a(n) for n in range(1,12)] # G. C. Greubel, Apr 08 2023

Formula

Let F(n) = Product_{i=1..n} f(i) = p/q (say). Then f(n+1) = p/(p-q).
From Robert FERREOL, Jun 12 2015: (Start)
Recurrence: f(1) = f(2) = 2; f(n+1) = f(n)^2/(f(n)^2 - f(n) + 1).
Since f(n) = 2^(2^(n-2))/a(n) for n >= 2, the recurrence for a(n) is:
a(1) = a(2) = 1; a(n+1) = 2^(2^(n-1)) - 2^(2^(n-2))*a(n) + a(n)^2.
(End)

Extensions

Name edited by Michael Somos, Aug 05 2017

A318128 Number of set-systems (finite sets of finite nonempty sets) with union {1,2,...,n} and intersection {}.

Original entry on oeis.org

1, 0, 2, 84, 31478, 2147000136, 9223371998203475474, 170141183460469231537996491257596836636, 57896044618658097711785492504343953922551603929769020459976077632195066756398
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2018

Keywords

Examples

			The a(2) = 2 set-systems are {{1},{2}}, and {{1},{2},{1,2}}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#===Range[n],Intersection@@#=={}]&]],{n,4}]

Formula

Inverse binomial transform of A318129.

A334860 a(0) = 1, a(1) = 2, after which, a(2n) = A334747(a(n)), a(2n+1) = a(n)^2.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 16, 5, 36, 18, 81, 12, 64, 32, 256, 10, 25, 72, 1296, 27, 324, 162, 6561, 24, 144, 128, 4096, 48, 1024, 512, 65536, 15, 100, 50, 625, 108, 5184, 2592, 1679616, 54, 729, 648, 104976, 243, 26244, 13122, 43046721, 20, 576, 288, 20736, 192, 16384, 8192, 16777216, 96, 2304, 2048, 1048576, 768, 262144, 131072, 4294967296, 30
Offset: 0

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A334747 to the parent, and each child to the right is obtained by squaring the parent:
1
|
...................2...................
3 4
6......../ \........9 8......../ \........16
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 36 18 81 12 64 32 256
10 25 72 1296 27 324 162 6561 24 144 128 4096 48 1024 512 65536
etc.
This is the mirror image of the tree in A334866.
Fermi-Dirac primes, A050376, occur at rightward growing branches that originate from primes situated at the left edge.
The tree illustrated in A163511 is expanded as x -> 2*x for the left child and x -> A003961(x) for the right child, while this tree is expanded as x -> A225546(2*A225546(x)) for the left child, and x -> A225546(A003961(A225546(x))) for the right child.

Crossrefs

Cf. A000290, A225546, A334204, A334747, A334859 (inverse), A334866 (mirror image).
Cf. A001146 (right edge of the tree), A019565 (left edge), A334110 (the right children of the left edge).
Composition of permutations A163511 and A225546.

Programs

Formula

a(0) = 1, a(1) = 2; and for n > 0, a(2n) = A334747(a(n)), a(2n+1) = a(n)^2.
a(n) = A225546(A163511(n)).
For n >= 0, a(2^n) = A019565(1+n), a(2^((2^n)-1)) = A000040(1+n).
A334109(a(n)) = A334204(n).
It seems that for n >= 1, A048675(a(n)) = A135529(n) = A048675(A163511(n)).

A057156 Number of functions from {0,1}^n to {0,1}^n.

Original entry on oeis.org

1, 4, 256, 16777216, 18446744073709551616, 1461501637330902918203684832716283019655932542976, 39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306816
Offset: 0

Views

Author

Henry Bottomley, Aug 15 2000

Keywords

Comments

a(n) is the number of subdivisions of the Brownian motion on the unit interval at the n-th stage of subdivision. - Stephen Crowley, Apr 12 2007

Examples

			a(1)=4 since the possibilities are f(0)=0, f(1)=0; f(0)=0, f(1)=1; f(0)=1, f(1)=0; f(0)=1, f(1)=1.
For n=3: we need to count maps from a set with 8 points to a set with 8 points.  There are 8^8 such functions, that is, a(3) = 8^8 = 2^24 = 16777216. - _N. J. A. Sloane_, Mar 05 2023
		

References

  • François Robert, Discrete Iterations: A Metric Study, Springer-Verlag, 1986, p. 167.
  • Norbert Wiener, Nonlinear Problems in Random Theory, MIT Press Classic, 1958, Lecture 1.

Crossrefs

Programs

  • Mathematica
    lst={};Do[AppendTo[lst,(2^n)^(2^n)],{n,0,8}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 02 2009 *)
  • PARI
    a(n)=1<<(n<Charles R Greathouse IV, Jan 19 2012

Formula

a(n) = (2^n)^(2^n) = A000312(A000079(n)) = A000079(A036289(n)) = A001146(n)^n = A000722(n) + A057157(n).
Sum_{n>=1} 1/a(n) = A134880. - Amiram Eldar, Nov 15 2020

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 02 2009

A176594 a(n) = 5^(2^n).

Original entry on oeis.org

5, 25, 625, 390625, 152587890625, 23283064365386962890625, 542101086242752217003726400434970855712890625, 293873587705571876992184134305561419454666389193021880377187926569604314863681793212890625
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2010

Keywords

Comments

Also the hypotenuse of primitive Pythagorean triangles obtained by repeated application of basic formula c(n)=p(n)^2+q(n)^2 starting p(0)=2, q(0)=1, see A100686, A098122. Example: a(2)=25 since starting (2,1) gives Pythagorean triple (3,4,5) using (3,4) as new generators gives triple (7,24,25) hypotenuse 25=a(2). - Carmine Suriano, Feb 04 2011

Crossrefs

Programs

Formula

a(n) = A165423(n+3).
a(n+1) = a(n)^2 with a(0)=5.
a(n-1) = (Im((2+i)^(2^n))^2 + Re((2+i)^(2^n))^2)^(1/2). - Carmine Suriano, Feb 04 2011
Sum_{n>=0} 1/a(n) = A078886. - Amiram Eldar, Nov 09 2020
Product_{n>=0} (1 + 1/a(n)) = 5/4. - Amiram Eldar, Jan 29 2021

Extensions

Offset corrected by R. J. Mathar, Jun 18 2010

A318129 Number of sets of nonempty subsets of {1,...,n} with intersection {}.

Original entry on oeis.org

1, 1, 3, 91, 31827, 2147158387, 9223372011085950171, 170141183460469231602560095290109272523, 57896044618658097711785492504343953923912733397452774312538303978325772978595
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2018

Keywords

Examples

			The a(2) = 3 sets of sets are {}, {{1},{2}}, {{1},{2},{1,2}}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]],Or[#=={},Intersection@@#=={}]&]],{n,0,4}]

Formula

Binomial transform of A318128.
a(n) = A318130(n) - 2^(2^n - 1). [corrected]

A369938 Numbers whose maximal exponent in their prime factorization is a power of 2.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

First differs from its subsequence A138302 \ {1} at n = 378: a(378) = 432 = 2^4 * 3^3 is not a term of A138302.
First differs from A096432, A220218 \ {1}, A335275 \ {1} and A337052 \ {1} at n = 56, and from A270428 \ {1} at n = 113.
Numbers k such that A051903(k) is a power of 2.
The asymptotic density of this sequence is 1/zeta(3) + Sum_{k>=2} (1/zeta(2^k+1) - 1/zeta(2^k)) = 0.87442038669659566330... .

Crossrefs

Programs

  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2];
    Select[Range[2, 100], pow2Q[Max[FactorInteger[#][[;; , 2]]]] &]
    Select[Range[2,80],IntegerQ[Log2[Max[FactorInteger[#][[;;,2]]]]]&] (* Harvey P. Dale, Nov 06 2024 *)
  • PARI
    ispow2(n) = n >> valuation(n, 2) == 1;
    is(n) = n > 1 && ispow2(vecmax(factor(n)[, 2]));
Previous Showing 21-30 of 116 results. Next