cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001146 a(n) = 2^(2^n).

Original entry on oeis.org

2, 4, 16, 256, 65536, 4294967296, 18446744073709551616, 340282366920938463463374607431768211456, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 0

Views

Author

Keywords

Comments

Or, write previous term in base 2, read in base 4.
a(1) = 2, a(n) = smallest power of 2 which does not divide the product of all previous terms.
Number of truth tables generated by Boolean expressions of n variables. - C. Bradford Barber (bradb(AT)shore.net), Dec 27 2005
From Ross Drewe, Feb 13 2008: (Start)
Or, number of distinct n-ary operators in a binary logic. The total number of n-ary operators in a k-valued logic is T = k^(k^n), i.e., if S is a set of k elements, there are T ways of mapping an ordered subset of n elements from S to an element of S. Some operators are "degenerate": the operator has arity p, if only p of the n input values influence the output. Therefore the set of operators can be partitioned into n+1 disjoint subsets representing arities from 0 to n.
For n = 2, k = 2 gives the familiar Boolean operators or functions, C = F(A,B). There are 2^2^2 = 16 operators, composed of: arity 0: 2 operators (C = 0 or 1), arity 1: 4 operators (C = A, B, not(A), not(B)), arity 2: 10 operators (including well-known pairs AND/NAND, OR/NOR, XOR/EQ). (End)
From José María Grau Ribas, Jan 19 2012: (Start)
Or, numbers that can be formed using the number 2, the power operator (^), and parenthesis. (End) [The paper by Guy and Selfridge (see also A003018) shows that this is the same as the current sequence. - N. J. A. Sloane, Jan 21 2012]
a(n) is the highest value k such that A173419(k) = n+1. - Charles R Greathouse IV, Oct 03 2012
Let b(0) = 8 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n) = a(n) for n > 0. - Derek Orr, Jan 15 2015
Twice the number of distinct minimal toss sequences of a coin to obtain all sequences of length n, which is 2^(2^n-1). This derives from the 2^n ways to cut each of the de Bruijn sequences B(2,n). - Maurizio De Leo, Feb 28 2015
I conjecture that { a(n) ; n>1 } are the numbers such that n^4-1 divides 2^n-1, intersection of A247219 and A247165. - M. F. Hasler, Jul 25 2015
Erdős has shown that it is an irrationality sequence (see Guy reference). - Stefano Spezia, Oct 13 2024

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n+1) = (a(n))^2.
1 = Sum_{n>=0} a(n)/A051179(n+1) = 2/3 + 4/15 + 16/255 + 256/65535, ..., with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
a(n) = A000079(A000079(n)). - Robert Israel, Jan 15 2015
Sum_{n>=0} 1/a(n) = A007404. - Amiram Eldar, Oct 14 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = 2.
Product_{n>=0} (1 - 1/a(n)) = A215016. (End)

A014571 Consider the Morse-Thue sequence (A010060) as defining a binary constant and convert it to decimal.

Original entry on oeis.org

4, 1, 2, 4, 5, 4, 0, 3, 3, 6, 4, 0, 1, 0, 7, 5, 9, 7, 7, 8, 3, 3, 6, 1, 3, 6, 8, 2, 5, 8, 4, 5, 5, 2, 8, 3, 0, 8, 9, 4, 7, 8, 3, 7, 4, 4, 5, 5, 7, 6, 9, 5, 5, 7, 5, 7, 3, 3, 7, 9, 4, 1, 5, 3, 4, 8, 7, 9, 3, 5, 9, 2, 3, 6, 5, 7, 8, 2, 5, 8, 8, 9, 6, 3, 8, 0, 4, 5, 4, 0, 4, 8, 6, 2, 1, 2, 1, 3, 3, 3, 9, 6, 2, 5, 6
Offset: 0

Views

Author

Keywords

Comments

This constant is transcendental (Mahler, 1929). - Amiram Eldar, Nov 14 2020

Examples

			0.412454033640107597783361368258455283089...
In hexadecimal, .6996966996696996... .
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.8 Prouhet-Thue-Morse Constant, p. 437.

Crossrefs

Programs

  • Maple
    A014571 := proc()
        local nlim,aold,a ;
        nlim := ilog2(10^Digits) ;
        aold := add( A010060(n)/2^n,n=0..nlim) ;
        a := 0.0 ;
        while abs(a-aold) > abs(a)/10^(Digits-3) do
            aold := a;
            nlim := nlim+200 ;
            a := add( A010060(n)/2^n,n=0..nlim) ;
        od:
        evalf(%/2) ;
    end:
    A014571() ; # R. J. Mathar, Mar 03 2008
  • Mathematica
    digits = 105; t[0] = 0; t[n_?EvenQ] := t[n] = t[n/2]; t[n_?OddQ] := t[n] = 1-t[(n-1)/2]; FromDigits[{t /@ Range[digits*Log[10]/Log[2] // Ceiling], -1}, 2] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 20 2014 *)
    1/2-1/4*Product[1-2^(-2^k), {k, 0, Infinity}] // N[#, 105]& // RealDigits // First (* Jean-François Alcover, May 15 2014, after Steven Finch *)
    (* ThueMorse function needs $Version >= 10.2 *)
    P = FromDigits[{ThueMorse /@ Range[0, 400], 0}, 2];
    RealDigits[P, 10, 105][[1]] (* Jean-François Alcover, Jan 30 2020 *)
  • PARI
    default(realprecision, 20080); x=0.0; m=67000; for (n=1, m-1, x=x+x; x=x+sum(k=0, length(binary(n))-1, bittest(n, k))%2); x=10*x/2^m; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b014571.txt", n, " ", d)); \\ Harry J. Smith, Apr 25 2009
    
  • PARI
    1/2-prodinf(n=0,1-1.>>2^n)/4 \\ Charles R Greathouse IV, Jul 31 2012

Formula

Equals Sum_{k>=0} A010060(n)*2^(-(k+1)). [Corrected by Jianing Song, Oct 27 2018]
Equals Sum_{k>=1} 2^(-(A000069(k)+1)). - Jianing Song, Oct 27 2018
From Amiram Eldar, Nov 14 2020: (Start)
Equals 1/2 - (1/4) * A215016.
Equals 1/(3 - 1/A247950). (End)

Extensions

Corrected and extended by R. J. Mathar, Mar 03 2008

A258714 Decimal expansion of Sum_{k>=0} 1/Product_{i=0..k} (2^(2^i) - 1).

Original entry on oeis.org

1, 3, 5, 5, 6, 4, 2, 7, 0, 2, 8, 5, 4, 8, 1, 6, 7, 2, 3, 3, 3, 3, 2, 6, 2, 7, 1, 4, 5, 9, 0, 7, 3, 9, 5, 5, 2, 3, 3, 9, 8, 8, 2, 9, 3, 8, 5, 9, 9, 4, 8, 7, 7, 2, 8, 4, 6, 8, 9, 7, 8, 5, 8, 5, 3, 3, 9, 7, 5, 0, 9, 4, 9, 9, 7, 7, 7, 2, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2015

Keywords

Examples

			1.3556427028548167233332627145907395523398829385994877...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/NProduct[1 - 1/2^(2^k), {k, 0, Infinity}, WorkingPrecision -> 120] - 3/2][[1]] (* Amiram Eldar, Feb 19 2024 *)
  • PARI
    1/prodinf(k = 0, 1 - 1/2^(2^k)) - 3/2 \\ Amiram Eldar, Feb 19 2024

Formula

From Amiram Eldar, Feb 19 2024: (Start)
Equals Sum_{n>=0} 1/A370458(n).
Equals 1/A215016 - 3/2. (End)

A258716 Decimal expansion of 3 + 2*Sum_{k>=0} 1/Product_{i=0..k} (2^(2^i) - 1).

Original entry on oeis.org

5, 7, 1, 1, 2, 8, 5, 4, 0, 5, 7, 0, 9, 6, 3, 3, 4, 4, 6, 6, 6, 6, 5, 2, 5, 4, 2, 9, 1, 8, 1, 4, 7, 9, 1, 0, 4, 6, 7, 9, 7, 6, 5, 8, 7, 7, 1, 9, 8, 9, 7, 5, 4, 5, 6, 9, 3, 7, 9, 5, 7, 1, 7, 0, 6, 7, 9, 5, 0, 1, 8, 9, 9, 9, 5, 5, 4, 4, 2, 8
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2015

Keywords

Examples

			5.7112854057096334466665254291814791046797658771989754...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2/NProduct[1 - 1/2^(2^k), {k, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 19 2024 *)
  • PARI
    2/prodinf(k = 0, 1 - 1/2^(2^k)) \\ Amiram Eldar, Feb 19 2024

Formula

Equals 3 + A258715.
From Amiram Eldar, Feb 19 2024: (Start)
Equals 2 * A258714 + 3.
Equals 2/A215016. (End)

A258715 Decimal expansion of 2*Sum_{k>=0} 1/Product_{i=0..k} (2^(2^i) - 1).

Original entry on oeis.org

2, 7, 1, 1, 2, 8, 5, 4, 0, 5, 7, 0, 9, 6, 3, 3, 4, 4, 6, 6, 6, 6, 5, 2, 5, 4, 2, 9, 1, 8, 1, 4, 7, 9, 1, 0, 4, 6, 7, 9, 7, 6, 5, 8, 7, 7, 1, 9, 8, 9, 7, 5, 4, 5, 6, 9, 3, 7, 9, 5, 7, 1, 7, 0, 6, 7, 9, 5, 0, 1, 8, 9, 9, 9, 5, 5, 4, 4, 2, 8
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2015

Keywords

Examples

			2.7112854057096334466665254291814791046797658771989754...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2/NProduct[1 - 1/2^(2^k), {k, 0, Infinity}, WorkingPrecision -> 120] - 3][[1]] (* Amiram Eldar, Feb 19 2024 *)
  • PARI
    2/prodinf(k = 0, 1 - 1/2^(2^k)) - 3 \\ Amiram Eldar, Feb 19 2024

Formula

From Amiram Eldar, Feb 19 2024: (Start)
Equals 2 * A258714.
Equals 2/A215016 - 3. (End)

A370458 Partial products of A051179.

Original entry on oeis.org

1, 3, 45, 11475, 752014125, 3229876072253041875, 59580697294650083747194059426068878125, 20274260698223485458204828871028994444941136941453077244297515184669623921875
Offset: 0

Views

Author

Amiram Eldar, Feb 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Times, Table[2^(2^n) - 1, {n, 0, 7}]]
  • PARI
    lista(nmax) = {my(v = 1); for(i = 0, nmax, v *= (2^(2^i) - 1); print1(v, ", "));}
    
  • Python
    from math import prod
    def A370458(n): return prod((1<<(1<Chai Wah Wu, Feb 19 2024

Formula

a(n) = Product_{k=0..n} A051179(k).
Sum_{n>=0} 1/a(n) = A258714 = 1/A215016 - 3/2 = 1.355642702854... (Knuth, 2013).

A351404 Decimal expansion of Sum_{k>=1} A106400(k-1)/k.

Original entry on oeis.org

3, 9, 8, 7, 6, 1, 0, 8, 8, 1, 0, 8, 4, 1, 8, 8, 1, 2, 4, 0, 7, 4, 3, 0, 5, 4, 4, 4, 0, 0, 2, 7, 3, 0, 6, 0, 3, 3, 6, 8, 0, 8, 9, 1, 5, 4, 6, 7, 1, 9, 8, 1, 2, 7, 2, 9, 9, 5, 7, 4, 4, 4, 5, 7, 6, 9, 2, 7, 9, 1, 7, 2, 0, 3, 6, 3, 8, 6, 0, 2, 9, 2, 5, 9, 7, 0, 6, 5, 4, 8, 4, 8, 7, 3, 7, 0, 2, 4, 9, 6, 5, 4, 4, 4, 3
Offset: 0

Views

Author

Albert Böschow and Julian Böschow, Feb 10 2022

Keywords

Comments

Define S(j) = Sum_{k=1..2^j} A106400(k-1)/k; S(28) agrees with this constant for 104 digits. - Jon E. Schoenfield, Feb 22 2022

Examples

			0.39876108810841881240743054440027306033680...
		

Crossrefs

Extensions

More digits from Jon E. Schoenfield, Feb 22 2022

A357762 Decimal expansion of -Sum_{k>=1} A106400(k)/k.

Original entry on oeis.org

1, 1, 9, 6, 2, 8, 3, 2, 6, 4, 3, 2, 5, 2, 5, 6, 4, 3, 7, 2, 2, 2, 2, 9, 1, 6, 3, 3, 2, 0, 0, 8, 1, 9, 1, 8, 1, 0, 1, 0, 4, 2, 6, 7, 4, 6, 4, 0, 1, 5, 9, 4, 3, 8, 1, 8, 9, 8, 7, 2, 3, 3, 3, 7, 3, 0, 7, 8, 3, 7, 5, 1, 6, 1, 0, 9, 1, 5, 8, 0, 8, 7, 7, 7, 9, 1, 1, 9, 6, 4, 5, 4, 6, 2, 1, 1, 0, 7, 4, 8, 9, 6, 3, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2022

Keywords

Comments

The asymptotic mean of the excess of the number of odious divisors over the number of evil divisors (A357761, see formula).
The convergence of the partial sums S(m) = -Sum_{k=1..2^m-1} A106400(k)/k is fast: e.g., S(28) is already correct to 100 decimal digits (see also Jon E. Schoenfield's comment in A351404).

Examples

			1.19628326432525643722229163320081918101042674640159...
		

Crossrefs

Similar constants: A215016, A351404

Programs

  • Mathematica
    sum = 0; m = 1; pow = 2; Do[sum -= (-1)^DigitCount[k, 2, 1]/k; If[k == pow - 1, Print[m, " ", N[sum, 120]]; m++; pow *= 2], {k, 1, 2^30}]
  • PARI
    default(realprecision, 150);
    sm = 0.; m = 1; pow = 2; for(k = 1, 2^30, sm -= (-1)^hammingweight(k)/k; if(k == pow - 1, print(m," ",sm); m++; pow *= 2))

Formula

Equals -2 * Sum_{k>=1} A106400(2*k-1)/(2*k-1).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A357761(k).

A383471 a(n) = round(Product_{k=1..n} (1 + 1/2^2^(-k))).

Original entry on oeis.org

1, 2, 3, 6, 12, 23, 46, 93, 185, 370, 739, 1478, 2955, 5910, 11819, 23637, 47274, 94549, 189097, 378194, 756388, 1512776, 3025551, 6051102, 12102203, 24204407, 48408813, 96817626, 193635251, 387270501, 774541003, 1549082005, 3098164010, 6196328019, 12392656038, 24785312075
Offset: 0

Views

Author

Greg Huber, Apr 27 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Product[(1+2^(-2^(-k))),{k,1,n}]+1/2]
  • PARI
    a(n) = round(prod(k=1, n, 1 + 1/2^2^(-k))); \\ Michel Marcus, Apr 28 2025

A383472 a(n) = round(Product_{k=1..n} 1 + 2^2^(-k)).

Original entry on oeis.org

1, 2, 5, 11, 23, 46, 92, 184, 369, 738, 1477, 2954, 5909, 11818, 23637, 47274, 94548, 189096, 378193, 756387, 1512775, 3025550, 6051101, 12102203, 24204406, 48408812, 96817625, 193635250, 387270501, 774541002, 1549082004, 3098164009, 6196328018, 12392656037
Offset: 0

Views

Author

Greg Huber, Apr 27 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Product[(1+2^(2^(-k))),{k,1,n}]+1/2]
  • PARI
    a(n) = round(prod(k=1, n, 1 + 2^2^(-k))); \\ Michel Marcus, Apr 28 2025
Showing 1-10 of 10 results.