cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 116 results. Next

A256608 Longest eventual period of a^(2^k) mod n for all a.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6
Offset: 1

Views

Author

Ivan Neretin, Apr 04 2015

Keywords

Comments

a(n) is a divisor of phi(phi(n)) (A010554).

Examples

			In other words, eventual period of {0..n-1} under the map x -> x^2 mod n.
For example, with n=10 the said map acts as follows. Read down the columns: the column headed 2 for example means that (repeatedly squaring mod 10), 2 goes to 4 goes to 16 = 6 (mod 10) goes to 36 = 6 mod 10 --- and has reached a fixed point.
0 1 2 3 4 5 6 7 8 9
0 1 4 9 6 5 6 9 4 1
0 1 6 1 6 5 6 1 6 1
0 1 6 1 6 5 6 1 6 1
and thus every number reaches a fixed point. This means the eventual common period is 1, hence a(10)=1.
		

Crossrefs

First differs from A256607 at n=43.
LCM of entries in row n of A279185.

Programs

  • Mathematica
    a[n_] := With[{lambda = CarmichaelLambda[n]}, MultiplicativeOrder[2, lambda / (2^IntegerExponent[lambda, 2])]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 28 2016 *)
  • PARI
    rpsi(n) = lcm(znstar(n)[2]); \\ A002322
    pb(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ A007733
    a(n) = pb(rpsi(n)); \\ Michel Marcus, Jan 28 2016

Formula

a(n) = A007733(A002322(n)).
a(prime(n)) = A037178(n). - Michel Marcus, Jan 27 2016

Extensions

Name changed by Jianing Song, Feb 02 2025

A336321 a(n) = A122111(A225546(n)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 19, 6, 9, 11, 53, 10, 131, 23, 13, 8, 311, 15, 719, 22, 29, 59, 1619, 14, 49, 137, 21, 46, 3671, 17, 8161, 12, 61, 313, 37, 25, 17863, 727, 139, 26, 38873, 31, 84017, 118, 39, 1621, 180503, 20, 361, 77, 317, 274, 386093, 33, 71, 58, 733, 3673, 821641, 34, 1742537, 8167, 87, 18, 151, 67, 3681131, 626, 1627, 41, 7754077, 35, 16290047
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A122111 and A225546 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A122111 maps the k-th prime to 2^k, whereas A225546 maps it to 2^2^(k-1).
In composing these permutations, this sequence maps the squarefree numbers, as listed in A019565, to the prime numbers in increasing order; and the list of powers of 2 to the "normal" numbers (A055932), as listed in A057335.

Examples

			From _Peter Munn_, Jan 04 2021: (Start)
In this set of examples we consider [a(n)] as a function a(.) with an inverse, a^-1(.).
First, a table showing mapping of the powers of 2:
  n     a^-1(2^n) =    2^n =        a(2^n) =
        A001146(n-1)   A000079(n)   A057335(n)
  0             (1)         1            1
  1               2         2            2
  2               4         4            4
  3              16         8            6
  4             256        16            8
  5           65536        32           12
  6      4294967296        64           18
  ...
Next, a table showing mapping of the squarefree numbers, as listed in A019565 (a lexicographic ordering by prime factors):
  n   a^-1(A019565(n))   A019565(n)      a(A019565(n))   a^2(A019565(n))
      Cf. {A337533}      Cf. {A005117}   = prime(n)      = A033844(n-1)
  0              1               1             (1)               (1)
  1              2               2               2                 2
  2              3               3               3                 3
  3              8               6               5                 7
  4              6               5               7                19
  5             12              10              11                53
  6             18              15              13               131
  7            128              30              17               311
  8              5               7              19               719
  9             24              14              23              1619
  ...
As sets, the above columns are A337533, A005117, A008578, {1} U A033844.
Similarly, we get bijections between sets A000290\{0} -> {1} U A070003; and {1} U A335740 -> A005408 -> A066207.
(End)
		

Crossrefs

A122111 composed with A225546.
Cf. A336322 (inverse permutation).
Other sequences used in a definition of this sequence: A000040, A000188, A019565, A248663, A253550, A253560.
Sequences used to express relationship between terms of this sequence: A003159, A003961, A297002, A334747.
Cf. A057335.
A mapping between the binary tree sequences A334866 and A253563.
Lists of sets (S_1, S_2, ... S_j) related by the bijection defined by the sequence: (A000290\{0}, {1} U A070003), ({1} U A001146, A000079, A055932), ({1} U A335740, A005408, A066207), (A337533, A005117, A008578, {1} U A033844).

Formula

a(n) = A122111(A225546(n)).
Alternative definition: (Start)
Write n = m^2 * A019565(j), where m = A000188(n), j = A248663(n).
a(1) = 1; otherwise for m = 1, a(n) = A000040(j), for m > 1, a(n) = A253550^j(A253560(a(m))).
(End)
a(A000040(m)) = A033844(m-1).
a(A001146(m)) = 2^(m+1).
a(2^n) = A057335(n).
a(n^2) = A253560(a(n)).
For n in A003159, a(2n) = b(a(n)), where b(1) = 2, b(n) = A253550(n), n >= 2.
More generally, a(A334747(n)) = b(a(n)).
a(A003961(n)) = A297002(a(n)).
a(A334866(m)) = A253563(m).

A336322 a(n) = A225546(A122111(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 16, 9, 12, 10, 32, 15, 24, 18, 256, 30, 64, 7, 48, 27, 20, 14, 512, 36, 40, 81, 96, 21, 128, 42, 65536, 54, 60, 72, 1024, 35, 120, 45, 768, 70, 192, 105, 80, 162, 28, 210, 131072, 25, 144, 90, 160, 11, 4096, 108, 1536, 135, 56, 22, 2048, 33, 84, 243, 4294967296, 216, 384, 66, 240, 270, 288, 55, 262144, 110, 168, 324, 480, 50
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A225546 and A122111 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A225546 maps the k-th prime to 2^2^(k-1), whereas A122111 maps it to 2^k.
In composing these permutations, this sequence maps the list of prime numbers to the squarefree numbers, as listed in A019565; and the "normal" numbers (A055932), as listed in A057335, to ascending powers of 2.

Crossrefs

A225546 composed with A122111.
Sorted even bisection: A335738.
Sorted odd bisection (excluding 1): A335740.
Sequences used to express relationship between terms of this sequence: A001222, A003961, A253560, A331590, A350066.
Sequences of sequences (S_1, S_2, ... S_j) with the property a(S_i) = S_{i+1}, or essentially so: (A033844, A000040, A019565), (A057335, A000079, A001146), (A000244, A011764), (A001248, A334110), (A253563, A334866).
The inverse permutation, A336321, lists sequences where the property is weaker (between the sets of terms).

Formula

a(A033844(m)) = A000040(m+1). [Offset corrected Peter Munn, Feb 14 2022]
a(A000040(m)) = A019565(m).
a(A057335(m)) = 2^m.
For m >= 1, a(2^m) = A001146(m-1).
a(A253563(m)) = A334866(m).
From Peter Munn, Feb 14 2022: (Start)
a(A253560(n)) = a(n)^2.
For n >= 2, a(A003961(n)) = A331590(a(n), 2^2^(A001222(n)-1)).
a(A350066(n, k)) = A331590(a(n), a(k)).
(End)

A092124 a(0) = 2, a(n) = (2^(2^n)+2)*a(n-1) for n>0.

Original entry on oeis.org

2, 12, 216, 55728, 3652301664, 15686516209310983872, 289365149921256212111714425927549504896, 98465858119637274097902770931519409290135390781788892125023848289699334298368
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 30 2004

Keywords

Comments

In binary representation a(n) can be interpreted as an expression to represent n according to John von Neumann's definition of natural numbers: braces are coded as 1 and 0 and the empty set as 10={};
a(n) = (A001146(n)+2)*a(n-1) = 2*(A058891(n)+1)*a(n-1).

Examples

			a(3)=55728='1101100110110000' -> {{}{{}}{{}{{}}}} -> {{},{{}},{{},{{}}}} -> {0,{0},{0,{0}}} -> {0,1,{0,1}} -> {0,1,2} -> A001477(3)=3.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==2,a[n]==(2^(2^n)+2)a[n-1]},a,{n,8}] (* Harvey P. Dale, Nov 15 2020 *)
    nxt[{n_,a_}]:={n+1,(2^2^(n+1)+2)a}; NestList[nxt,{0,2},8][[;;,2]] (* Harvey P. Dale, Aug 11 2023 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A092124(n): return ((1<<(1<A092124(n-1) if n else 2 # Chai Wah Wu, Nov 23 2023

A165420 a(1) = 1, a(2) = 2, a(n) = product of the previous terms for n >= 3.

Original entry on oeis.org

1, 2, 2, 4, 16, 256, 65536, 4294967296, 18446744073709551616, 340282366920938463463374607431768211456, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 1

Views

Author

Jaroslav Krizek, Sep 17 2009

Keywords

Comments

Same as A001146 with 1 and 2 added in front. - Stanislav Sykora, Oct 05 2014

Crossrefs

Programs

  • Mathematica
    a[1]:= 1; a[2]:= 2; a[n_]:= Product[a[j], {j,1,n-1}]; Table[a[n], {n, 1, 12}] (* G. C. Greubel, Oct 19 2018 *)
  • PARI
    {a(n) = if(n==1, 1, if(n==2, 2, prod(j=1, n-1, a(j))))};
    for(n=1, 10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018

Formula

a(1) = 1, a(2) = 2, a(n) = Product_{i=1..n-1} a(i), n >= 3.
a(1) = 1, a(2) = 2, a(n) = A000079(2^(n-3)) = A001146(n-3) = 2^(2^(n-3)), n >= 3.
a(1) = 1, a(2) = 2, a(3) = 2, a(n) = (a(n-1))^2, n >= 4.

A247165 Numbers m such that m^2 + 1 divides 2^m - 1.

Original entry on oeis.org

0, 16, 256, 8208, 65536, 649800, 1382400, 4294967296
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 30 2014

Keywords

Comments

Contains 2^(2^k) = A001146(k) for k >= 2. - Robert Israel, Dec 02 2014
a(9) > 10^12. - Hiroaki Yamanouchi, Sep 16 2018
For each n, a(n)^2 + 1 belongs to A176997, and thus a(n) belongs to either A005574 or A135590. - Max Alekseyev, Feb 08 2024

Examples

			0 is in this sequence because 0^2 + 1 = 1 divides 2^0 - 1 = 1.
		

Crossrefs

Cf. A247219 (n^2 - 1 divides 2^n - 1), A247220 (n^2 + 1 divides 2^n + 1).

Programs

  • Magma
    [n: n in [1..100000] | Denominator((2^n-1)/(n^2+1)) eq 1];
    
  • Maple
    select(n -> (2 &^ n - 1) mod (n^2 + 1) = 0, [$1..10^6]); # Robert Israel, Dec 02 2014
  • Mathematica
    a247165[n_Integer] := Select[Range[0, n], Divisible[2^# - 1, #^2 + 1] &]; a247165[1500000] (* Michael De Vlieger, Nov 30 2014 *)
  • PARI
    for(n=0,10^9,if(Mod(2,n^2+1)^n==+1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014
    
  • Python
    A247165_list = [n for n in range(10**6) if n == 0 or pow(2,n,n*n+1) == 1]
    # Chai Wah Wu, Dec 04 2014

Extensions

a(8) from Chai Wah Wu, Dec 04 2014
Edited by Jon E. Schoenfield, Dec 06 2014

A326967 Number of sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.

Original entry on oeis.org

2, 4, 10, 92, 38362, 4020654364, 18438434849260080818, 340282363593610212050791236025945013956, 115792089237316195072053288318104625957065868613454666314675263144628100544274
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

Alternatively, these are sets of subsets of {1..n} whose dual is a (strict) antichain, also called T_1 sets of subsets. The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other.

Examples

			The a(0) = 2 through a(2) = 10 sets of subsets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{},{1}}
                  {{},{2}}
                  {{1},{2}}
                  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Sets of subsets are A001146.
The unlabeled version is A326951.
The covering version is A326960.
The case without empty edges is A326965.
Sets of subsets whose dual is a weak antichain are A326969.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n]]],tmQ[#]&]],{n,0,3}]

Formula

a(n) = 2 * A326965(n).
Binomial transform of A326960.

A330828 The squares of the Fermat primes, (A019434(n))^2.

Original entry on oeis.org

9, 25, 289, 66049, 4295098369
Offset: 1

Views

Author

Walter Kehowski, Jan 06 2020

Keywords

Comments

Also the first element of the power-spectral basis of A330826. The second element of the power-spectral basis of A330826 is A001146(n+1), n=0..4.

Examples

			a(1) = 3^2 = 9. The spectral basis of A330826(1) = 12 is {9,4}, consisting of primes and powers.
		

Crossrefs

Programs

  • Maple
    F := n -> 2^(2^n) + 1;
    a := proc(n) if isprime(F(n)) then return F(n)^2 fi; end;
    [seq(a(n)),n=0..4)];
  • Mathematica
    (2^2^Select[Range[0,5],PrimeQ[2^(2^#)+1] &]+1)^2 (* Stefano Spezia, May 01 2025 *)

Formula

a(n) = A019434(n)^2.

A331740 Number of prime factors in A225546(n), counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 2, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 4, 4, 33, 4, 9, 512, 7, 1024, 2, 18, 65, 12, 3, 2048, 129, 34, 6, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 5, 20, 10, 130, 513, 65536, 7, 131072, 1025, 10, 2, 36, 19, 262144, 65, 258, 13, 524288, 4, 1048576, 2049, 6
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Crossrefs

Cf. also A331309, A331591.
Positions of 1's: A001146.

Programs

  • Mathematica
    Array[If[# == 1, 0, PrimeOmega@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 75] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A331740(n) = if(1==n,0,my(f=factor(n)); sum(i=1,#f~,hammingweight(f[i,2])*(2^(primepi(f[i,1])-1))));

Formula

Additive with a(p^e) = A000120(e) * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n).
a(n) = A001222(A225546(n)).
A331591(n) <= a(n) <= A048675(n).
From Peter Munn, Sep 11 2021: (Start)
a(A001146(m)) = 1.
a(A331590(m, k)) = a(m) + a(k).
For squarefree k, a(k*m^2) = a(k) + a(m) = A048675(k) + a(m).
(End)

A137840 Number of distinct n-ary operators in a quaternary logic.

Original entry on oeis.org

4, 256, 4294967296, 340282366920938463463374607431768211456, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096
Offset: 0

Views

Author

Ross Drewe, Feb 13 2008

Keywords

Comments

The total number of n-ary operators in a k-valued logic is T = k^(k^n), i.e. if S is a set of k elements, there are T ways of mapping an ordered subset of n elements taken from S to an element of S. Some operators are "degenerate": the operator has arity p, if only p of the n input values influence the output. Therefore the set of operators can be partitioned into n+1 disjoint subsets representing arities from 0 to n.

Crossrefs

Cf. A001146 (in binary logic), A055777 (in a ternary logic), A137841 (in a quinternary logic).
Subsequence of A000302.

Formula

a(n) = 4^(4^n).
Previous Showing 41-50 of 116 results. Next