cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 2427 results. Next

A212164 Numbers k such that the maximum exponent in its prime factorization is greater than the number of positive exponents (A051903(k) > A001221(k)).

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (namely, 3 and 1, although the 1 is often left implicit).   2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 belongs to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212167.
See also A212165, A212166, A212168.
Subsequence of A188654.

Programs

  • Haskell
    import Data.List (elemIndices)
    a212164 n = a212164_list !! (n-1)
    a212164_list = map (+ 1) $ findIndices (< 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] > Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); #e && vecmax(e) > #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) < 0; A050326(a(n)) = 0. - Reinhard Zumkeller, May 03 2013

A212167 Numbers k such that the maximum exponent in its prime factorization is not greater than the number of positive exponents (A051903(k) <= A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212166 and A212168. Includes numerous subsequences that are subsequences of neither A212166 nor A212168.

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although the 1 is often left implicit).  2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 does not belong to the sequence. But 10 = 2^1*5^1 and 20 = 2^2*5^1 belong, since the maximal exponents in their prime factorizations are 1 and 2 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212164. See also A212165.
Subsequences (none of which are subsequences of A212166 or A212168) include A002110, A051451, A129912, A179983, A181826, A181827, A182862, A182863. Includes all members of A003418.

Programs

  • Haskell
    import Data.List (findIndices)
    a212167 n = a212167_list !! (n-1)
    a212167_list = map (+ 1) $ findIndices (>= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Maple
    isA212167 := proc(n)
        simplify(A051903(n) <= A001221(n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA212167(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 06 2021
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] <= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) <= #e; } \\ Amiram Eldar, Sep 09 2024

Formula

A225230(a(n)) >= 0; A050326(a(n)) > 0. - Reinhard Zumkeller, May 03 2013

A323171 Numerator of the average of distinct prime factors of n (A008472(n)/A001221(n)).

Original entry on oeis.org

2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 4, 2, 17, 5, 19, 7, 5, 13, 23, 5, 5, 15, 3, 9, 29, 10, 31, 2, 7, 19, 6, 5, 37, 21, 8, 7, 41, 4, 43, 13, 4, 25, 47, 5, 7, 7, 10, 15, 53, 5, 8, 9, 11, 31, 59, 10, 61, 33, 5, 2, 9, 16, 67, 19, 13, 14, 71, 5, 73, 39, 4, 21, 9, 6, 79, 7, 3, 43, 83, 4, 11, 45, 16, 13, 89, 10, 10, 25, 17, 49, 12, 5
Offset: 2

Views

Author

Antti Karttunen, Jan 05 2019

Keywords

Examples

			Fractions begins with 2, 3, 2, 5, 5/2, 7, 2, 3, 7/2, 11, 5/2, 13, ...
		

Crossrefs

Cf. A323172 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Mean[FactorInteger[n][[;; , 1]]]]; Array[a, 100, 2] (* Amiram Eldar, Sep 17 2024 *)
  • PARI
    A008472(n) = vecsum(factor(n)[, 1]); \\ From A008472
    A323171(n) = (numerator(A008472(n)/omega(n)));

A323172 Denominator of the average of distinct prime factors of n (A008472(n)/A001221(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2
Offset: 2

Views

Author

Antti Karttunen, Jan 05 2019

Keywords

Crossrefs

Cf. A323171 (numerators).

Programs

  • Mathematica
    a[n_] := Denominator[Mean[FactorInteger[n][[;; , 1]]]]; Array[a, 100, 2] (* Amiram Eldar, Sep 17 2024 *)
  • PARI
    A008472(n) = vecsum(factor(n)[, 1]); \\ From A008472
    A323172(n) = (denominator(A008472(n)/omega(n)));

A159560 Minimal recursive sequence beginning with 3 such that A001221(a(n)) = A001221(n).

Original entry on oeis.org

3, 4, 5, 7, 10, 11, 13, 16, 18, 19, 20, 23, 24, 26, 27, 29, 33, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 53, 60, 61, 64, 65, 68, 69, 72, 73, 74, 75, 76, 79, 84, 89, 91, 92, 93, 97, 98, 101, 104, 106, 108, 109, 111, 112, 115, 116, 117, 121, 126, 127, 129, 133, 137, 141, 150
Offset: 2

Views

Author

Vladimir Shevelev, Apr 15 2009

Keywords

Crossrefs

Programs

  • Maple
    A001221 := proc(n) nops(numtheory[factorset](n)) ; end proc:
    A159560 := proc(n) option remember; if n = 2 then 3; else for a from procname(n-1)+1 do if A001221(a) = A001221(n) then return a; end if; end do: end if; end proc:
    seq(A159560(n),n=2..70) ; # R. J. Mathar, Oct 30 2010
  • Mathematica
    a[2] = 3; a[n_] := a[n] = For[an = a[n - 1] + 1, True, an++, If[PrimeNu[an] == PrimeNu[n], Return[an]]];
    Table[a[n], {n, 2, 66}] (* Jean-François Alcover, Nov 14 2017 *)

Formula

a(n+1) = min{m > a(n): A001221(m) = A001221(n+1)}.

Extensions

Corrected (4 inserted, 8 removed) and extended beyond 53 by R. J. Mathar, Oct 30 2010

A212165 Numbers k such that the maximum exponent in its prime factorization is not less than the number of positive exponents (A051903(k) >= A001221(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 100, 101, 103, 104
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212164 and A212166. Includes numerous subsequences that are subsequences of neither A212164 nor A212166.
Includes all factorials except A000142(3) = 6.
Observation: all terms in DATA section are also the first 65 numbers n whose difference between the arithmetic derivative of n and the sum of the divisors of n is nonnegative. - Omar E. Pol, Dec 19 2012

Examples

			10 = 2^1*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although 1s are often left implicit).  2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 does not belong to the sequence. But 20 = 2^2*5^1 and 40 = 2^3*5^1 belong, since the largest exponents in their prime factorizations are 2 and 3 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212168.
See also A212167.
Subsequences (none of which are subsequences of A212164 or A212166) include A000079, A001021, A066120, A087980, A130091, A141586, A166475, A181818, A181823, A181824, A182763, A212169. Also includes all terms in A181813 and A181814.

Programs

  • Haskell
    import Data.List (findIndices)
    a212165 n = a212165_list !! (n-1)
    a212165_list = map (+ 1) $ findIndices (<= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] >= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) >= #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) <= 0. - Reinhard Zumkeller, May 03 2013

A280195 Expansion of 1/(1 - Sum_{k>=2} floor(1/omega(k))*x^k), where omega(k) is the number of distinct prime factors (A001221).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 4, 8, 11, 19, 28, 47, 72, 116, 182, 289, 460, 724, 1153, 1820, 2891, 4572, 7249, 11482, 18190, 28821, 45651, 72338, 114582, 181549, 287596, 455647, 721847, 1143588, 1811748, 2870239, 4547232, 7203907, 11412882, 18080833, 28644680, 45380392, 71894054, 113898439, 180443915, 285869028, 452888824, 717490903, 1136687237
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2016

Keywords

Comments

Number of compositions (ordered partitions) into prime powers (1 excluded).

Examples

			a(6) = 4 because we have [4, 2], [3, 3], [2, 4] and [2, 2, 2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[1/(1 - Sum[Floor[1/PrimeNu[k]] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=2} floor(1/omega(k))*x^k).

A306071 Decimal expansion of Sum_{n>=1} (-1)^omega(n) phi(n)^2/n^4, where omega(n) is the number of distinct prime factors of n (A001221) and phi is Euler's totient function (A000010).

Original entry on oeis.org

8, 0, 7, 3, 3, 0, 8, 2, 1, 6, 3, 6, 2, 0, 5, 0, 3, 9, 1, 4, 8, 6, 5, 4, 2, 7, 9, 9, 3, 0, 0, 3, 1, 1, 3, 4, 0, 2, 5, 8, 4, 5, 8, 2, 5, 0, 8, 1, 5, 5, 6, 6, 4, 4, 0, 1, 8, 0, 0, 5, 2, 0, 7, 7, 0, 4, 4, 1, 3, 8, 1, 4, 8, 4, 9, 3, 7, 5, 1, 8, 6, 4, 9, 6, 9, 5, 6, 0, 9, 3, 5, 0, 9, 6, 2, 9, 4, 8, 3, 7, 6, 5, 0, 1, 1, 8
Offset: 0

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The constant A that appears in the asymptotic formulae for the sums of the bi-unitary divisor function (A306069) and the bi-unitary totient function (A306070).
The product in Suryanarayana's 1972 paper has a error that was corrected in his 1975 paper.
The probability that 2 randomly selected numbers will be unitary coprime (i.e. their largest common unitary divisor is 1). - Amiram Eldar, Aug 27 2019

Examples

			0.80733082163620503914...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.

Crossrefs

Programs

  • Mathematica
    cc = CoefficientList[Series[Log[1 - (p - 1)/(p^2*(p + 1))] /. p -> 1/x, {x, 0, 36}], x]; f = FindSequenceFunction[cc]; digits = 20; A = Exp[NSum[f[n + 1 // Floor]*(PrimeZetaP[n]), {n, 2, Infinity}, NSumTerms -> 16 digits, WorkingPrecision -> 16 digits]]; RealDigits[A, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *)
    $MaxExtraPrecision = 1000; Do[Print[Zeta[2] * Exp[-N[Sum[q = Expand[(2*p^2 - 2*p^3 + p^4)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}], 120]]], {t, 300, 1000, 100}] (* Vaclav Kotesovec, May 29 2020 *)
  • PARI
    prodeulerrat(1 - (p-1)/(p^2 * (p+1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Product_{p prime} (1 - (p-1)/(p^2 * (p+1))).
Equals zeta(2) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4).

Extensions

a(1)-a(20) from Jean-François Alcover, Jun 19 2018
a(20)-a(24) from Jon E. Schoenfield, May 27 2019
More terms from Vaclav Kotesovec, May 29 2020

A328959 a(n) = sigma_0(n) - 2 - (omega(n) - 1) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222.

Original entry on oeis.org

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019. The idea for this sequence came from Mats Granvik

Keywords

Comments

Conjecture: All terms are nonnegative except for a(1) = -1.

Examples

			a(72) = sigma_0(72) - 2 - (omega(72) - 1) * nu(72) = 12 - 2 - (5 - 1) * 2 = 2.
		

Crossrefs

The positions of positive terms are conjectured to be A320632.
Positions of first appearances are A328963.
omega(n) * nu(n) is A113901(n).
(omega(n) - 1) * nu(n) is A307409.
sigma_0(n) - omega(n) * nu(n) is A328958(n).

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-2-(PrimeOmega[n]-1)*PrimeNu[n],{n,100}]
  • PARI
    A307408(n) = 2+((bigomega(n)-1)*omega(n));
    A328959(n) = (numdiv(n) - A307408(n)); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A000005(n) - A307408(n). - Antti Karttunen, Nov 17 2019

A328963 Smallest k such that n = sigma_0(k) - ((bigomega(k)-1)*omega(k)), where sigma_0 = A000005, omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 2, 36, 72, 144, 180, 576, 420, 360, 864, 1296, 720, 36864, 1080, 1440, 1260, 5184, 1800, 2160, 3360, 5760, 15552, 4620, 2520, 150994944, 6480, 5400, 13440, 8640, 6300, 9663676416, 5040, 12960, 9240, 331776, 7560, 186624, 248832, 34560, 10080, 1327104, 13860
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Comments

a(n) = smallest k for which A328959(k) = n-2. a(31) > 2^28. - Antti Karttunen, Nov 17 2019
a(n) <= 2^(n-1)*3^2, with equality for n = 3, 4, 5, 7, 13, 25, 31, 43,... . - Giovanni Resta, Nov 18 2019

Examples

			The sequence of terms together with their prime signatures begins:
        1: ()
        2: (1)
       36: (2,2)
       72: (3,2)
      144: (4,2)
      180: (2,2,1)
      576: (6,2)
      420: (2,1,1,1)
      360: (3,2,1)
      864: (5,3)
     1296: (4,4)
      720: (4,2,1)
    36864: (12,2)
     1080: (3,3,1)
     1440: (5,2,1)
     1260: (2,2,1,1)
     5184: (6,4)
     1800: (3,2,2)
     2160: (4,3,1)
     3360: (5,1,1,1)
     5760: (7,2,1)
    15552: (6,5)
     4620: (2,1,1,1,1)
     2520: (3,2,1,1)
150994944: (24,2)
		

Crossrefs

Positions of first appearances in A328959.
All terms are in A025487.

Programs

  • Mathematica
    dat=Table[DivisorSigma[0,n]-(PrimeOmega[n]-1)*PrimeNu[n],{n,1000}];
    Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}]
  • PARI
    search_up_to = 2^28;
    A307408(n) = 2+((bigomega(n)-1)*omega(n));
    A328959(n) = (numdiv(n) - A307408(n));
    A328963(search_up_to) = { my(m=Map(),t,lista=List([])); for(n=1,search_up_to,t =
    A328959(n); if(!mapisdefined(m,t+2), mapput(m,t+2,n))); for(u=1,oo,if(!mapisdefined(m,u,&t),return(Vec(lista)), listput(lista,t))); };
    v328963 = A328963(search_up_to);
    A328963(n) = v328963[n]; \\ Antti Karttunen, Nov 17 2019

Extensions

Definition corrected and terms a(25) - a(30) added by Antti Karttunen, Nov 17 2019
a(31)-a(42) from Giovanni Resta, Nov 18 2019
Previous Showing 21-30 of 2427 results. Next