cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A248476 Number of pairs (not necessarily successors) of partitions of n that are incomparable in dominance (natural, majorization) ordering.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 8, 30, 70, 170, 340, 770, 1424, 2810, 5166, 9542, 16614, 29596, 49952, 85610, 141604, 234622, 379218, 616008, 976134, 1549134, 2418768, 3771252, 5795300, 8903306, 13497384, 20438432, 30630108, 45789134, 67857566, 100346480, 147170162, 215341690
Offset: 1

Views

Author

Wouter Meeussen, Oct 07 2014

Keywords

Comments

a(n) is always even since each incomparable pair (p1,p2) has a distinct companion (p2,p1).

Crossrefs

Programs

  • Mathematica
    Table[Count[ Flatten[Outer[dominant , Partitions[n], Partitions[n], 1]], 0], {n, 24}] (* see A248475 for definition of 'dominant' *)

Formula

a(n) = p(n)^2 - A182988(n), where p(n) denotes the number of partitions of n, A000041(n).

A355389 Number of unordered pairs of distinct integer partitions of n.

Original entry on oeis.org

0, 0, 1, 3, 10, 21, 55, 105, 231, 435, 861, 1540, 2926, 5050, 9045, 15400, 26565, 43956, 73920, 119805, 196251, 313236, 501501, 786885, 1239525, 1915903, 2965830, 4528545, 6909903, 10417330, 15699606, 23403061, 34848726, 51435153, 75761895, 110744403, 161577276
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Examples

			The a(0) = 0 through a(4) = 10 pairs:
  .  .  (2)(11)  (3)(21)    (4)(22)
                 (3)(111)   (4)(31)
                 (21)(111)  (22)(31)
                            (4)(211)
                            (22)(211)
                            (31)(211)
                            (4)(1111)
                            (22)(1111)
                            (31)(1111)
                            (211)(1111)
		

Crossrefs

The version for compositions is A006516.
Without distinctness we get A086737.
The unordered version is A355390, without distinctness A001255.
A000041 counts partitions, strict A000009.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.

Programs

  • Maple
    a:= n-> binomial(combinat[numbpart](n),2):
    seq(a(n), n=0..36);  # Alois P. Heinz, Feb 07 2024
  • Mathematica
    Table[Binomial[PartitionsP[n],2],{n,0,6}]
  • PARI
    a(n) = binomial(numbpart(n), 2); \\ Michel Marcus, Jul 05 2022

Formula

a(n) = binomial(A000041(n), 2) = A355390(n)/2.

A366527 Number of integer partitions of 2n containing at least one even part.

Original entry on oeis.org

0, 1, 3, 7, 16, 32, 62, 113, 199, 339, 563, 913, 1453, 2271, 3496, 5308, 7959, 11798, 17309, 25151, 36225, 51748, 73359, 103254, 144363, 200568, 277007, 380437, 519715, 706412, 955587, 1286762, 1725186, 2303388, 3063159, 4058041, 5356431, 7045454, 9235841
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

Also partitions of 2n with even product.

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (2)  (4)    (6)      (8)
       (22)   (42)     (44)
       (211)  (222)    (62)
              (321)    (332)
              (411)    (422)
              (2211)   (431)
              (21111)  (521)
                       (611)
                       (2222)
                       (3221)
                       (4211)
                       (22211)
                       (32111)
                       (41111)
                       (221111)
                       (2111111)
		

Crossrefs

This is the even bisection of A047967.
For odd instead of even parts we have A182616, ranks A366321 or A366528.
These partitions have ranks A366529, subset of A324929.
A000041 counts integer partitions, strict A000009.
A006477 counts partitions w/ at least one odd and even part, ranks A366532.
A086543 counts partitions of n not containing n/2, ranks A366319.
A086543 counts partitions w/o odds, ranks A366322, even bisection A182616.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]

Formula

a(n) = A000041(2n) - A000009(2n).

A368565 a(n) = number of pairs (p,q) of partitions of n such that d(p,q) < o(p,q), where d and o are distance functions; see Comments.

Original entry on oeis.org

0, 0, 0, 0, 0, 30, 106, 316, 652, 1388, 2618, 5170, 9164, 16790, 29046, 50714, 84732, 143588, 234048, 385210, 617050, 990868, 1558310, 2459300, 3806838, 5900184
Offset: 1

Views

Author

Clark Kimberling, Dec 31 2023

Keywords

Comments

The definition of d depends on the greedy ordering of the partitions p(i) of n; that is, p(1) >= p(2) >= ... >= p(k), where k = A000041(n); see A366156. The ordinal distance o is defined by o(p(i),p(j)) = |i-j|.

Examples

			The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)):
          |    4   31   22   211  1111
------------------------------------------------
   4 d    |    0    2    4    4    6
     o    |    0    1    2    3    4
  31 d    |    2    0    2    2    4
     o    |    1    0    1    2    3
  22 d    |    4    2    0    2    4
     o    |    2    1    0    1    2
 211 d    |    4    2    2    0    2
     o    |    3    2    1    0    1
1111 d    |    6    4    4    2    0
     o    |    4    3    2    1    0
The table shows 0 pairs (p,q) for which d(p,q) < o(p,q), so a(4) = 0.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := PartitionsP[n];
    q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]];
    r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]];
    d[u_, v_] := Total[Abs[u - v]];
    p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]];
    Table[Count[p[n], 0], {n, 1, 16}]  (* A368565  *)
    Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1,16}]  (* A368566 *)
    Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}]  (* A368567 *)

Formula

A368564(n) + a(n) + A368566(n) = A001255(n) for n >= 1.

A368566 a(n) = number of pairs (p,q) of partitions of n such that d(p,q) > o(p,q), where d and o are distance functions; see Comments.

Original entry on oeis.org

0, 2, 6, 18, 34, 48, 62, 108, 166, 242, 334, 512, 706, 984, 1368, 1876, 2492, 3360, 4422, 5848, 7574, 9792, 12596, 16130, 20412, 25850
Offset: 1

Views

Author

Clark Kimberling, Dec 31 2023

Keywords

Comments

The definition of d depends on the greedy ordering of the partitions p(i) of n; that is, p(1) >= p(2) >= ... >= p(k), where k = A000041(n); see A366156. The ordinal distance o is defined by o(p(i),p(j)) = |i-j|.

Examples

			The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)):
          |    4   31   22   211  1111
------------------------------------------------
   4 d    |    0    2    4    4    6
     o    |    0    1    2    3    4
  31 d    |    2    0    2    2    4
     o    |    1    0    1    2    3
  22 d    |    4    2    0    2    4
     o    |    2    1    0    1    2
 211 d    |    4    2    2    0    2
     o    |    3    2    1    0    1
1111 d    |    6    4    4    2    0
     o    |    4    3    2    1    0
The table shows 18 pairs (p,q) for which d(p,q) > o(p,q), so a(4) = 18.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := PartitionsP[n];
    q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]];
    r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]];
    d[u_, v_] := Total[Abs[u - v]];
    p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]];
    Table[Count[p[n], 0], {n, 1, 16}]  (* A368565  *)
    Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1,16}]  (* A368566 *)
    Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}]  (* A368567 *)

Formula

A368564(n) + A368565(n) + a(n) = A001255(n) for n >= 1.

A369704 Number of pairs (p,q) of partitions of n such that the set of parts in q is a subset of the set of parts in p.

Original entry on oeis.org

1, 1, 2, 4, 8, 13, 28, 43, 84, 137, 243, 372, 684, 1010, 1702, 2620, 4256, 6276, 10134, 14740, 23094, 33742, 51139, 73550, 111303, 158140, 233006, 331099, 481324, 674778, 973928, 1353504, 1925734, 2668263, 3748636, 5153887, 7201684, 9820055, 13572468, 18445878
Offset: 0

Views

Author

Alois P. Heinz, Jan 29 2024

Keywords

Examples

			a(5) = 13: (11111, 11111), (2111, 11111), (2111, 2111), (2111, 221), (221, 11111), (221, 2111), (221, 221), (311, 11111), (311, 311), (32, 32), (41, 11111), (41, 41), (5, 5).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i) option remember; `if`(n=0,
         `if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(
          add(b(n-i*j, m-i*h, i-1), h=0..m/i), j=1..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i - 1] + Sum[Sum[b[n - i*j, m - i*h, i - 1], {h, 0, m/i}], { j, 1, n/i}]]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)

Formula

a(n) = A000041(n) + A369707(n).

A143228 Triangle read by rows, T(n,k) = p(n) * p(k), where p(n) = the number of partitions of n, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 3, 3, 6, 9, 5, 5, 10, 15, 25, 7, 7, 14, 21, 35, 49, 11, 11, 22, 33, 55, 77, 121, 15, 15, 30, 45, 75, 105, 165, 225, 22, 22, 44, 66, 110, 154, 242, 330, 484, 30, 30, 60, 90, 150, 210, 330, 450, 660, 900, 42, 42, 84, 126, 210, 294, 462, 630, 924, 1260, 1764
Offset: 0

Views

Author

Gary W. Adamson, Jul 31 2008

Keywords

Examples

			First few rows of the triangle:
   1;
   1,  1;
   2,  2,  4;
   3,  3,  6,  9;
   5,  5, 10, 15, 25;
   7,  7, 14, 21, 35,  49;
  11, 11, 22, 33, 55,  77, 121;
  15, 15, 30, 45, 75, 105, 165, 225;
  ...
T(7,4) = 75 = p(7) * p(4) = 15 * 5.
		

Crossrefs

Cf. A000041, A143229 (row sums).
Main diagonal gives: A001255.

Programs

  • Magma
    A143228:= func< n,k | NumberOfPartitions(n)*NumberOfPartitions(k) >;
    [A143228(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 27 2024
    
  • Mathematica
    Table[PartitionsP[n]*PartitionsP[k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 27 2024 *)
  • SageMath
    def A143215(n,k): return number_of_partitions(n)*number_of_partitions(k)
    flatten([[A143215(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 27 2024

Formula

T(n, 0) = A000041(n) (left border).
Sum_{k=0..n} T(n, k) = A143229(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A000041(n)*A087787(n). - G. C. Greubel, Aug 27 2024

A200089 Decimal expansion of sum of reciprocals of squares of partition numbers.

Original entry on oeis.org

1, 4, 3, 8, 6, 9, 2, 9, 4, 3, 2, 8, 8, 2, 2, 6, 4, 4, 3, 9, 2, 8, 2, 5, 3, 6, 9, 6, 2, 0, 3, 7, 4, 9, 1, 4, 2, 8, 5, 1, 7, 2, 3, 1, 9, 3, 7, 9, 6, 1, 0, 8, 4, 4, 0, 4, 3, 6, 3, 4, 1, 6, 9, 7, 3, 2, 3, 4, 4, 5, 6, 2, 6, 6, 2, 8, 4, 1, 1, 4, 1, 2, 4, 8, 2, 0, 5, 7, 1, 7, 3, 8, 1, 6, 7, 0, 8, 8, 3, 1, 3, 8, 5, 2, 7
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 17 2011

Keywords

Crossrefs

Cf. A001255.

Programs

  • Mathematica
    RealDigits[N[Sum[1/PartitionsP[i]^2, {i, 2632}], 105]][[1]] (* Arkadiusz Wesolowski, Jan 29 2012 *)

Formula

Sum_{n=1..inf} 1/(A000041(n))^2 = 1.438692943288226443928253696....

A210966 Sum of all region numbers of all parts of the n-th region of the shell model of partitions.

Original entry on oeis.org

1, 4, 9, 4, 25, 6, 49, 8, 18, 10, 121, 12, 26, 14, 225, 16, 34, 18, 76, 20, 21, 484, 23, 48, 25, 104, 27, 56, 29, 900, 31, 64, 33, 136, 35, 36, 259, 38, 78, 40, 41, 1764, 43, 88, 45, 184, 47, 96, 49, 400, 51, 52, 159, 54, 55, 3136, 57, 116, 59, 240
Offset: 1

Views

Author

Omar E. Pol, Jul 01 2012

Keywords

Comments

Each part of a partition of n belongs to a different region of n. The "region number" of a part of the r-th region of n is equal to r. For the definition of "region of n" see A206437.

Examples

			The first seven regions of the shell model of partitions (or the seven regions of 5) are [1], [2, 1], [3, 1, 1], [2], [4, 2, 1, 1, 1], [3], [5, 2, 1, 1, 1, 1, 1] therefore the "region numbers" are [1], [2, 2], [3, 3, 3], [4], [5, 5, 5, 5, 5], [6], [7, 7, 7, 7, 7, 7, 7]. So a(1)..a(7) give: 1, 4, 9, 4, 25, 6, 49.
Also written as an irregular triangle the sequence begins:
1;
4;
9;
4,25;
6,49;
8,18,10,121;
12,26,14,225;
16,34,18,76,20,21,484;
23,48,25,104,27,56,29,900;
31,64,33,136,35,36,259,38,78,40,41,1764;
43,88,45,184,47,96,49,400,51,52,159,54,55,3136;
		

Crossrefs

Row n has length A187219(n). Row sums give A210969. Right border gives A001255, n >= 1.

Formula

a(n) = n*A194446(n).

A274691 Number of odd entries in the character table of the symmetric group S_n.

Original entry on oeis.org

1, 1, 4, 7, 19, 33, 77, 135, 218, 392, 798, 1312, 2381, 4107, 6639, 11722, 15869, 26333, 45115, 69168, 106213, 170710, 244042, 384991, 592859, 895944, 1326012, 2055454, 2884762, 4466493, 6553384, 9798596, 13336991, 20192347, 28680574, 41695293, 59766105, 86344867
Offset: 0

Views

Author

Richard Stanley, Jul 02 2016

Keywords

Examples

			For n = 2, all four character values are 1 or -1, so a(2) = 4.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> add(`if`(i[]::odd, 1, 0), i=entries(character(n))):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jul 10 2016

Extensions

More terms from Alois P. Heinz, Jul 10 2016
Further terms from Miller (2019) added by N. J. A. Sloane, Jul 07 2020
Previous Showing 11-20 of 28 results. Next