cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A342701 a(n) is the second smallest k such that phi(n+k) = phi(k), or 0 if no such solution exists.

Original entry on oeis.org

3, 7, 5, 14, 9, 34, 7, 16, 15, 26, 11, 68, 39, 28, 15, 32, 33, 72, 25, 40, 35, 56, 17, 101, 45, 37, 45, 56, 29, 152, 31, 61, 39, 56, 35, 144, 37, 61, 39, 74, 41, 128, 35, 88, 45, 161, 47, 192, 49, 82, 51, 74, 95, 216, 43, 97, 75, 203, 59, 304, 91, 88, 63, 122
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2021

Keywords

Comments

Sierpiński (1956) proved that there is at least one solution for all n>=1.
Schinzel (1958) proved that there are at least two solutions k to phi(n+k) = phi(k) for all n <= 8*10^47. Schinzel and Wakulicz (1959) increased this bound to 2*10^58.
Schinzel (1958) observed that under the prime k-tuple conjecture there is a second solution for all even n.
Holt (2003) proved that there is a second solution for all even n <= 1.38 * 10^26595411.

Examples

			a(1) = 3 since the solutions to the equation phi(1+k) = phi(k) are k = 1, 3, 15, 104, 164, ... (A001274), and 3 is the second solution.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, section B36, page 138-142.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 217-219.
  • Wacław Sierpiński, Sur une propriété de la fonction phi(n), Publ. Math. Debrecen, Vol. 4 (1956), pp. 184-185.

Crossrefs

Programs

  • Mathematica
    f[n_, 0] = 0; f[n_, k0_] := Module[{k = f[n, k0 - 1] + 1}, While[EulerPhi[n + k] != EulerPhi[k], k++]; k]; Array[f[#, 2] &, 100]
  • PARI
    a(n) = my(k=1, nb=0); while ((nb += (eulerphi(n+k)==eulerphi(k))) != 2, k++); k; \\ Michel Marcus, Mar 19 2021

A349308 Numbers k such that A321167(k) = A321167(k+1) > 1.

Original entry on oeis.org

80, 135, 296, 343, 375, 624, 728, 1160, 1431, 1592, 1624, 2240, 2295, 2456, 2511, 2624, 2727, 2888, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4671, 4887, 4913, 5048, 5144, 5264, 5319, 5480, 5696, 6183, 6344, 6375, 6591, 6615, 6776, 6858, 6859, 7479, 7624, 7640
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2021

Keywords

Comments

Without the restriction that A321167(k) > 1, all the terms of A340152 would be in this sequence.
In contrast to A001274, which has only one known pair of consecutive terms (5186 and 5187), this sequence seems to have many pairs of consecutive terms. The smaller members of these pairs are 6858, 13375, 22625, ...

Examples

			80 is a term since A321167(80) = A321167(81) = 3.
		

Crossrefs

Subsequence of A068140.
Similar sequences: A001274, A287055, A293184, A326403, A349307.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Select[Range[8000], euphi[#] == euphi[# + 1] > 1 &]

A001836 Numbers k such that phi(2k-1) < phi(2k), where phi is Euler's totient function A000010.

Original entry on oeis.org

53, 83, 158, 263, 293, 368, 578, 683, 743, 788, 878, 893, 908, 998, 1073, 1103, 1208, 1238, 1268, 1403, 1418, 1502, 1523, 1658, 1733, 1838, 1943, 1964, 2048, 2063, 2153, 2228, 2243, 2258, 2363, 2393, 2423, 2468, 2558, 2573, 2633, 2657, 2678
Offset: 1

Views

Author

Keywords

References

  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001836 n = a001836_list !! (n-1)
    a001836_list = f a000010_list 1 where
       f (u:v:ws) x = if u < v then x : f ws (x + 1) else f ws (x + 1)
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Maple
    with(numtheory): A001836:=n->`if`(phi(2*n-1) < phi(2*n), n, NULL): seq(A001836(n), n=1..5*10^3); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Select[Range[3000], EulerPhi[2# - 1] < EulerPhi[2#] &] (* Harvey P. Dale, Apr 01 2012 *)
    Position[Partition[EulerPhi[Range[6000]],2],?(#[[1]]<#[[2]]&),1,Heads-> False]//Flatten (* _Harvey P. Dale, Jul 02 2021 *)
  • PARI
    is(n)=eulerphi(2*n-1)Charles R Greathouse IV, Feb 21 2013
    
  • Python
    from sympy import totient
    def ok(n): return totient(2*n - 1) < totient(2*n) # Indranil Ghosh, Apr 29 2017

Extensions

Corrected and extended by Don Reble, Jan 04 2007

A057919 Numbers k such that phi(k) divides phi(k+1), where phi(k) is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 15, 16, 18, 36, 72, 90, 96, 104, 108, 154, 162, 164, 192, 194, 255, 256, 286, 364, 432, 486, 495, 576, 584, 702, 768, 792, 804, 924, 975, 1066, 1152, 1260, 1296, 1458, 2146, 2204, 2592, 2625, 2834, 2916, 3255, 3382, 3456, 3705, 3888
Offset: 1

Views

Author

Leroy Quet, Nov 11 2000

Keywords

Comments

The intersection of this sequence and A057920 is A001274. - Michel Marcus, Sep 14 2015

Examples

			6 is included because phi(6) = 2 divides phi(7) = 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], Divisible[EulerPhi[# + 1], EulerPhi[#]] &] (* Amiram Eldar, Jul 13 2019 *)
  • PARI
    lista(nn) = for (n=1, nn, if (eulerphi(n+1) % eulerphi(n) == 0, print1(n, ", "))); \\ Michel Marcus, Sep 14 2015

Extensions

Offset set to 1 by Michel Marcus, Sep 14 2015

A057920 Numbers k such that phi(k+1) divides phi(k), where phi is A000010.

Original entry on oeis.org

1, 3, 5, 13, 15, 35, 37, 61, 73, 104, 119, 157, 164, 193, 194, 255, 277, 313, 397, 421, 455, 457, 495, 527, 541, 545, 584, 613, 629, 661, 665, 673, 733, 757, 877, 975, 997, 1085, 1093, 1153, 1201, 1213, 1237, 1295, 1321, 1381, 1453, 1469, 1621, 1657, 1753
Offset: 1

Views

Author

Leroy Quet, Nov 11 2000

Keywords

Comments

The intersection of this sequence and A057919 is A001274. - Michel Marcus, Sep 14 2015

Examples

			13 is included because phi(14) = 6 divides phi(13) = 12.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 2000 do
        if modp(numtheory[phi](n),numtheory[phi](n+1)) =0 then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 14 2015
  • Mathematica
    Select[Range[1800], Divisible[EulerPhi[#], EulerPhi[# + 1]] &] (* Amiram Eldar, Jul 13 2019 *)
  • PARI
    lista(nn) = for (n=1, nn, if (eulerphi(n) % eulerphi(n+1) == 0, print1(n, ", "))); \\ Michel Marcus, Sep 14 2015

A201253 Numbers k such that phi(k+1) = 5*phi(k).

Original entry on oeis.org

11242770, 18673200, 77805000, 117138840, 122649450, 278023200, 393513120, 881879460, 2177410830, 2364390210, 3440848320, 3919303080, 5151045900, 5836032510, 7284273360, 8029787220, 8505803460, 12998545560, 13081794180, 13759304790, 14031484740, 14104654410
Offset: 1

Views

Author

Ray Chandler, Nov 28 2011

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = eulerphi(k+1) == 5*eulerphi(k); \\ Michel Marcus, Aug 10 2025

Extensions

a(9)-a(22) from Donovan Johnson, Nov 29 2011

A257550 Numbers n such that phi(n) = 5*phi(n+1).

Original entry on oeis.org

17907119, 18828809, 31692569, 73421039, 179467469, 322757819, 337567229, 627702389, 975314339, 2537636009, 2722271369, 3328653509, 3917646809, 5529412349, 6369847469, 11179199849, 11201693579, 11363832479, 13442120999, 16781760449, 19751331599, 20002320029
Offset: 1

Views

Author

Ray Chandler, Apr 29 2015

Keywords

Examples

			phi(17907119) = 16588800 = 5*phi(17907120).
		

Crossrefs

Programs

  • Mathematica
    a1={};nmax=10^9;last=EulerPhi[1];n=2;
    While[nRay Chandler, Apr 30 2015 *)

Extensions

a(10)-a(22) from Giovanni Resta, May 11 2015

A291043 Numbers n such that psi(n) = psi(n+1), where psi(n) is Dedekind psi function (A001615).

Original entry on oeis.org

4, 8, 14, 15, 32, 44, 45, 62, 63, 75, 135, 188, 195, 567, 608, 663, 704, 825, 956, 957, 1023, 1034, 1275, 1334, 1484, 1634, 1845, 1935, 2223, 2534, 2685, 2751, 2871, 3195, 3404, 3843, 3915, 4994, 7004, 7315, 7544, 8024, 8055, 9207, 10695, 11205, 11984, 12032
Offset: 1

Views

Author

Amiram Eldar, Aug 16 2017

Keywords

Comments

The only solutions to psi(n) = psi(n+1) = psi(n+2) below 10^8 are 14, 44, 62, 956.
In this sequence, smallest terms k such that k and k + 1 are both product of m + 1 distinct primes are 14, 1334, 84134, 3571905, 424152105 for 1 <= m <= 5. - Altug Alkan, Aug 17 2017

Examples

			4 is in the sequence since psi(4) = psi(5) = 6.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n Sum[MoebiusMu[d]^2 / d, {d, Divisors @ n}]];
    Select[Range[12000], psi[#] == psi[# + 1] &]
    SequencePosition[Table[If[n<1,0,n Sum[MoebiusMu[d]^2/d,{d,Divisors[n]}]],{n,13000}],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 22 2018 *)
  • PARI
    a001615(n) = n*sumdivmult(n, d, issquarefree(d)/d);
    isok(n) = a001615(n)==a001615(n+1) \\ Altug Alkan, Aug 17 2017, after Charles R Greathouse IV at A001615

A299535 Solutions to A000010(x) + A000010(x-1) = A000010(2*x).

Original entry on oeis.org

2, 4, 16, 256, 496, 976, 2626, 3256, 3706, 5188, 11716, 13366, 18316, 22936, 25546, 46216, 49216, 49336, 57646, 65536, 164176, 184636, 198316, 215776, 286996, 307396, 319276, 388246, 397486, 415276, 491536, 568816, 589408, 686986, 840256, 914176, 952576, 983776
Offset: 1

Views

Author

Benoit Cloitre, Feb 27 2018

Keywords

Comments

All terms are even. Does lim_{n->oo} log(a(n))/log(n) exist?
Are all terms except 2 congruent to 4 (mod 6)? - Robert Israel, Feb 27 2018 [a(3710) = 3044760173456 is the next term after 2 that is congruent to 2 (mod 6). - Amiram Eldar, Jul 17 2022]
Includes the Fermat numbers 2^(2^j)+1 for j = 0..5, but no other terms of A019434. - Benoit Cloitre, corrected by Robert Israel, Mar 02 2018
Even numbers k for which A000010(k) = A000010(k-1). - Robert Israel, Mar 02 2018

Crossrefs

Cf. A000010.

Programs

  • Magma
    [n: n in [2..10^6] | EulerPhi(n)+EulerPhi(n-1) eq EulerPhi(2*n)]; // Bruno Berselli, Feb 27 2018
  • Maple
    select(t -> numtheory:-phi(t)+ numtheory:-phi(t-1)=numtheory:-phi(2*t), [seq(i,i=2..10^6,2)]); # Robert Israel, Feb 27 2018
  • PARI
    for(n=2, 200000, if(eulerphi(n) + eulerphi(n-1) == eulerphi(2*n), print1(n, ",")))
    

Extensions

More terms from Robert Israel, Feb 27 2018

A300285 The number of solutions to phi(x) = phi(x+1) below 10^n, where phi(x) is the Euler totient function.

Original entry on oeis.org

2, 3, 10, 17, 36, 68, 142, 306, 651, 1267, 2567, 5236, 10755
Offset: 1

Views

Author

Amiram Eldar, Mar 01 2018

Keywords

Comments

Data extracted from A001274.
The terms were calculated by:
a(1)-a(2) - R. Ratat (1917).
a(3) - Victor L. Klee, Jr. (1947).
a(4)-a(5) - Mohan Lal and Paul Gillard (1972).
a(6) - David Ballew, Janell Case and Robert N. Higgins (1975).
a(7)-a(8) - Robert Baillie (1976).
a(9)-a(10) - Sidney West Graham, Jeffrey J. Holt, and Carl Pomerance (1999).
a(11) - T. D. Noe (2009).
a(12) - Jud McCranie (2012).
a(13) - Giovanni Resta (2014).

Examples

			Below 10^2 there are 3 solutions x = 1, 3, 15, hence a(2) = 3.
		

References

  • R. Ratat, L'Intermédiaire des Mathématiciens, Vol. 24, pp. 101-102, 1917.

Crossrefs

Programs

Formula

According to Thomas Ordowski's conjecture in A001274, a(n) ~ 10^(C*n/3), where C = 9/Pi^2 = 0.911891... Numerically it seems that C ~ 0.93.
Previous Showing 21-30 of 56 results. Next