cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A293616 Array of generalized Eulerian number triangles read by ascending antidiagonals, with m >= 0, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 0, 1, 0, 1, 10, 0, 7, 1, 0, 1, 15, 0, 25, 4, 0, 0, 1, 21, 0, 65, 10, 0, 1, 0, 1, 28, 0, 140, 20, 0, 15, 4, 0, 1, 36, 0, 266, 35, 0, 90, 30, 1, 0, 1, 45, 0, 462, 56, 0, 350, 120, 5, 0, 0, 1, 55, 0, 750, 84, 0, 1050, 350, 15, 0, 1, 0
Offset: 0

Views

Author

Peter Luschny, Oct 14 2017

Keywords

Examples

			Array starts:
m\j| 0   1  2     3    4  5       6       7    8  9      10      11      12
---|----------------------------------------------------------------------------
m=0| 1,  0, 0,    0,   0, 0,      0,      0,   0, 0,      0,      0,      0, ...
m=1| 1,  1, 0,    1,   1, 0,      1,      4,   1, 0,      1,     11,     11, ...
m=2| 1,  3, 0,    7,   4, 0,     15,     30,   5, 0,     31,    146,     91, ...
m=3| 1,  6, 0,   25,  10, 0,     90,    120,  15, 0,    301,    896,    406, ...
m=4| 1, 10, 0,   65,  20, 0,    350,    350,  35, 0,   1701,   3696,   1316, ...
m=5| 1, 15, 0,  140,  35, 0,   1050,    840,  70, 0,   6951,  11886,   3486, ...
m=6| 1, 21, 0,  266,  56, 0,   2646,   1764, 126, 0,  22827,  32172,   8022, ...
m=7| 1, 28, 0,  462,  84, 0,   5880,   3360, 210, 0,  63987,  76692,  16632, ...
m=8| 1, 36, 0,  750, 120, 0,  11880,   5940, 330, 0, 159027, 165792,  31812, ...
m=9| 1, 45, 0, 1155, 165, 0,  22275,   9900, 495, 0, 359502, 331617,  57057, ...
   A000217, A001296,A000292,A001297,A027789,A000332,A001298,A293610,A293611, ...
.
m\j| ...    13  14      15       16       17      18      19 20
---|----------------------------------------------------------------
m=0| ...,    0, 0,       0,       0,       0,      0,      0, 0, ...  [A000007]
m=1| ...,    1, 0,       1,      26,      66,     26,      1, 0, ...  [A173018]
m=2| ...,    6, 0,      63,     588,     868,    238,      7, 0, ...  [A062253]
m=3| ...,   21, 0,     966,    5376,    5586,   1176,     28, 0, ...  [A062254]
m=4| ...,   56, 0,    7770,   30660,   24570,   4200,     84, 0, ...  [A062255]
m=5| ...,  126, 0,   42525,  129780,   84630,  12180,    210, 0, ...
m=6| ...,  252, 0,  179487,  446292,  245322,  30492,    462, 0, ...
m=7| ...,  462, 0,  627396, 1315776,  625086,  68376,    924, 0, ...
m=8| ...,  792, 0, 1899612, 3444012, 1440582, 140712,   1716, 0, ...
m=9| ..., 1287, 0, 5135130, 8198190, 3063060, 270270,   3003, 0, ...
          A000389, A112494, A293612, A293613,A293614,A000579.
.
The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A062253, T(4, 2) is row 2 of A062255 (which is [65, 20, 0]) and T(4, 2, 1) = 20.
		

Crossrefs

A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A000292(n) = T(n, 2, 1),
A001297(n) = T(n, 3, 0), A027789(n) = T(n, 3, 1), A000332(n) = T(n, 3, 2),
A001298(n) = T(n, 4, 0), A293610(n) = T(n, 4, 1), A293611(n) = T(n, 4, 2),
A000389(n) = T(n, 4, 3), A112494(n) = T(n, 5, 0), A293612(n) = T(n, 5, 1),
A293613(n) = T(n, 5, 2), A293614(n) = T(n, 5, 3), A000579(n) = T(n, 5, 4),
A144969(n) = T(n, 6, 0), A000580(n) = T(n, 6, 5), A000295(n) = T(1, n, 1),
A000460(n) = T(1, n, 2), A000498(n) = T(1, n, 3), A000505(n) = T(1, n, 4),
A000514(n) = T(1, n, 5), A001243(n) = T(1, n, 6), A001244(n) = T(1, n, 7),
A126646(n) = T(2, n, 0), A007820(n) = T(n, n, 0).

Programs

  • Maple
    A293616 := proc(m, n, k) option remember:
    if m = 0 then m^n elif k < 0 or k > n then 0 elif n = 0 then 1 else
    (k+m)*A293616(m,n-1,k) + (n-k)*A293616(m,n-1,k-1) + A293616(m-1,n,k) fi end:
    for m in [$0..4] do for n in [$0..6] do print(seq(A293616(m, n, k), k=0..n)) od od;
    # Sample uses:
    A001298 := n -> A293616(n, 4, 0): A293614 := n -> A293616(n, 5, 3):
    # Flatten:
    a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1;
    while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end:
    seq(A293616(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11);
  • Mathematica
    GenEulerianRow[0, n_] := Table[If[n==0 && j==0,1,0], {j,0,n}];
    GenEulerianRow[m_, n_] := If[n==0,{1},Join[CoefficientList[x^(-m) (1 - x)^(n+m)
        PolyLog[-n-m, m, x] /. Log[1-x] -> 0, x], {0}]];
    (* Sample use: *)
    A173018Row[n_] := GenEulerianRow[1, n]; Table[A173018Row[n], {n, 0, 6}]

Formula

T(m, n, k) = (k + m)*T(m, n-1, k) + (n - k)*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k < 0 or k > n; and T(m, 0, k) = 0^k.
Let h(m, n) = x^(-m)*(1 - x)^(n + m)*PolyLog(-n - m, m, x) and p(m, n) the polynomial given by the expansion of h(m, n) after replacing log(1 - x) by 0. Then T(m, n, k) is the k-th coefficient of p(m, n) for 0 <= k < n.

A293617 Array of triangles read by ascending antidiagonals, T(m, n, k) = Pochhammer(m, k) * Stirling2(n + m, k + m) with m >= 0, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 2, 1, 0, 1, 10, 3, 7, 3, 0, 1, 15, 4, 25, 12, 2, 0, 1, 21, 5, 65, 30, 6, 1, 0, 1, 28, 6, 140, 60, 12, 15, 7, 0, 1, 36, 7, 266, 105, 20, 90, 50, 12, 0, 1, 45, 8, 462, 168, 30, 350, 195, 60, 6, 0, 1, 55, 9, 750, 252, 42, 1050, 560, 180, 24, 1, 0
Offset: 0

Views

Author

Peter Luschny, Oct 20 2017

Keywords

Examples

			Array starts:
m\j| 0   1  2     3       4       5       6       7       8       9      10
---|-----------------------------------------------------------------------
m=0| 1,  0, 0,    0,      0,      0,      0,      0,      0,      0,      0
m=1| 1,  1, 1,    1,      3,      2,      1,      7,     12,      6,      1
m=2| 1,  3, 2,    7,     12,      6,     15,     50,     60,     24,     31
m=3| 1,  6, 3,   25,     30,     12,     90,    195,    180,     60,    301
m=4| 1, 10, 4,   65,     60,     20,    350,    560,    420,    120,   1701
m=5| 1, 15, 5,  140,    105,     30,   1050,   1330,    840,    210,   6951
m=6| 1, 21, 6,  266,    168,     42,   2646,   2772,   1512,    336,  22827
m=7| 1, 28, 7,  462,    252,     56,   5880,   5250,   2520,    504,  63987
m=8| 1, 36, 8,  750,    360,     72,  11880,   9240,   3960,    720, 159027
m=9| 1, 45, 9, 1155,    495,     90,  22275,  15345,   5940,    990, 359502
   A000217, A001296,A027480,A002378,A001297,A293475,A033486,A007531,A001298
.
m\j| ...      11      12      13      14
---|-----------------------------------------
m=0| ...,      0,      0,      0,      0, ... [A000007]
m=1| ...,     15,     50,     60,     24, ... [A028246]
m=2| ...,    180,    390,    360,    120, ... [A053440]
m=3| ...,   1050,   1680,   1260,    360, ... [A294032]
m=4| ...,   4200,   5320,   3360,    840, ...
m=5| ...,  13230,  13860,   7560,   1680, ...
m=6| ...,  35280,  31500,  15120,   3024, ...
m=7| ...,  83160,  64680,  27720,   5040, ...
m=8| ..., 178200, 122760,  47520,   7920, ...
m=9| ..., 353925, 218790,  77220,  11880, ...
         A293476,A293608,A293615,A052762, ...
.
The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A053440, T(3, 2) is row 2 of A294032 (which is [25, 30, 12]) and T(3, 2, 1) = 30.
.
Remark: To adapt the sequences A028246 and A053440 to our enumeration use the exponential generating functions exp(x)/(1 - y*(exp(x) - 1)) and exp(x)*(2*exp(x) - y*exp(2*x) + 2*y*exp(x) - 1 - y)/(1 - y*(exp(x) - 1))^2 instead of those indicated in their respective entries.
		

Crossrefs

A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A027480(n) = T(n, 2, 1),
A002378(n) = T(n, 2, 2), A001297(n) = T(n, 3, 0), A293475(n) = T(n, 3, 1),
A033486(n) = T(n, 3, 2), A007531(n) = T(n, 3, 3), A001298(n) = T(n, 4, 0),
A293476(n) = T(n, 4, 1), A293608(n) = T(n, 4, 2), A293615(n) = T(n, 4, 3),
A052762(n) = T(n, 4, 4), A052787(n) = T(n, 5, 5), A000225(n) = T(1, n, 1),
A028243(n) = T(1, n, 2), A028244(n) = T(1, n, 3), A028245(n) = T(1, n, 4),
A032180(n) = T(1, n, 5), A228909(n) = T(1, n, 6), A228910(n) = T(1, n, 7),
A000225(n) = T(2, n, 0), A007820(n) = T(n, n, 0).
A028246(n,k) = T(1, n, k), A053440(n,k) = T(2, n, k), A294032(n,k) = T(3, n, k),
A293926(n,k) = T(n, n, k), A124320(n,k) = T(n, k, k), A156991(n,k) = T(k, n, n).
Cf. A293616.

Programs

  • Maple
    A293617 := proc(m, n, k) option remember:
    if m = 0 then 0^n elif k < 0 or k > n then 0 elif n = 0 then 1 else
    (k+m)*A293617(m,n-1,k) + k*A293617(m,n-1,k-1) + A293617(m-1,n,k) fi end:
    for m in [$0..4] do for n in [$0..6] do print(seq(A293617(m, n, k), k=0..n)) od od;
    # Sample uses:
    A027480 := n -> A293617(n, 2, 1): A293608 := n -> A293617(n, 4, 2):
    # Flatten:
    a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1;
    while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end:
    seq(A293617(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11);
  • Mathematica
    T[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m];
    For[m = 0, m < 7, m++, Print[Table[T[m, n, k], {n,0,6}, {k,0,n}]]]
    A293617Row[m_, n_] := Table[T[m, n, k], {k,0,n}];
    (* Sample use: *)
    A293926Row[n_] := A293617Row[n, n];

Formula

T(m,n,k) = (k + m)*T(m, n-1, k) + k*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k<0 or k>n; and T(m, 0, k) = 0^k.
T(m,n,k) = Pochhammer(m, k)*binomial(n + m, k + m)*NorlundPolynomial(n - k, -k - m).

A037959 a(n) = n^2*(n+1)*(n+2)!/48.

Original entry on oeis.org

6, 90, 1200, 15750, 211680, 2963520, 43545600, 673596000, 10977120000, 188367379200, 3399953356800, 64457449056000, 1281520880640000, 26676557107200000, 580481882652672000, 13183287756807168000
Offset: 2

Views

Author

Keywords

References

  • Identity (1.19)/(n+3) in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 3.

Crossrefs

Programs

  • Magma
    [Factorial(n)*StirlingSecond(n+3,n)/(n+3): n in [2..30]]; // G. C. Greubel, Jun 20 2022
    
  • Mathematica
    Table[(n+2)!n^2(n+1)/48,{n,2,20}] (* Harvey P. Dale, Jul 29 2021 *)
  • SageMath
    [factorial(n)*stirling_number2(n+3, n)/(n+3) for n in (2..30)] # G. C. Greubel, Jun 20 2022

Formula

(n-1)^2*a(n) = n*(n+2)*(n+1)*a(n-1). - R. J. Mathar, Jul 26 2015
From G. C. Greubel, Jun 20 2022: (Start)
a(n) = (1/(n+3))*Sum_{j=0..n} (-1)^(n+j)*binomial(n,j)*j^(n+3).
a(n) = n!*StirlingS2(n+3, n)/(n+3).
a(n) = A037961(n)/(n+3).
a(n) = A131689(n+3, n).
a(n) = A019538(n+3, n).
E.g.f.: x*(1 + 6*x + 3*x^2)/(4*(1-x)^6). (End)

A352979 a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} (k*j*i)^3.

Original entry on oeis.org

0, 1, 585, 28800, 505280, 4951530, 33209946, 170320080, 714724560, 2566030995, 8130545995, 23253835176, 61054704360, 149085989780, 342048076020, 743408003520, 1540821690816, 3062326169925, 5862986735085, 10855192630480, 19500255870480
Offset: 0

Views

Author

Roudy El Haddad, Apr 13 2022

Keywords

Comments

a(n) is the sum of all products of three cubes of positive integers up to n, i.e., the sum of all products of three elements from the set of cubes {1^3, ..., n^3}.

References

  • El Haddad, R. (2022). A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.

Crossrefs

Cf. A352980 (for distinct cubes).
Cf. A001297 (for power 1), A351105 (for squares).
Cf. A000578 (cubes), A000537 (sum of first n cubes), A346642 (order 2).

Programs

  • PARI
    {a(n) = n^2 * (n + 1)^2 * (n + 2) * (n + 3) * (35*n^6 + 205*n^5 + 263*n^4 - 221*n^3 - 214*n^2 + 324*n - 112)/13440};
    
  • Python
    def A352979(n): return n**2*(n*(n*(n*(n*(n*(n*(n*(n*(n*(35*n + 450) + 2293) + 5700) + 6405) + 770) - 3661) - 240) + 2320) + 40) - 672)//13440 # Chai Wah Wu, May 14 2022

Formula

a(n) = n^2 * (n + 1)^2 * (n + 2) * (n + 3) * (35*n^6 + 205*n^5 + 263*n^4 - 221*n^3 - 214*n^2 + 324*n - 112)/13440.
a(n) = binomial(n+3,4)*binomial(n+1,2)*(35*n^6 + 205*n^5 + 263*n^4 - 221*n^3 - 214*n^2 + 324*n - 112)/280.

A124051 Quasi-mirror of A062196 formatted as a triangular array.

Original entry on oeis.org

3, 6, 8, 10, 30, 15, 15, 80, 90, 24, 21, 175, 350, 210, 35, 28, 336, 1050, 1120, 420, 48, 36, 588, 2646, 4410, 2940, 756, 63, 45, 960, 5880, 14112, 14700, 6720, 1260, 80, 55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99, 66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120
Offset: 0

Views

Author

Zerinvary Lajos, Nov 03 2006

Keywords

Examples

			Triangle begins as:
   3;
   6,    8;
  10,   30,    15;
  15,   80,    90,    24;
  21,  175,   350,   210,     35;
  28,  336,  1050,  1120,    420,     48;
  36,  588,  2646,  4410,   2940,    756,     63;
  45,  960,  5880, 14112,  14700,   6720,   1260,    80;
  55, 1485, 11880, 38808,  58212,  41580,  13860,  1980,   99;
  66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120;
		

Crossrefs

Columns k: A000217(n+2) (k=0), A002417(n+1) (k=1), A001297(n) (k=2), A105946(n-2) (k=3), A105947(n-3) (k=4), A105948(n-4) (k=5), A107319(n-5) (k=6).
Diagonals: A005563(n+1) (k=n), A033487(n) (k=n-1), A027790(n) (k=n-2), A107395(n-3) (k=n-3), A107396(n-4) (k=n-4), A107397(n-5) (k=n-5), A107398(n-6) (k=n-6), A107399(n-7) (k=n-7).
Sums: A322938(n+1) (row).

Programs

  • Magma
    A124051:= func< n,k | Binomial(n+1,n-k+1)*Binomial(n+3,n-k+1) >;
    [A124051(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2025
    
  • Maple
    for n from 0 to 10 do seq(binomial(n,i-1)*binomial(n+2,n+1-i), i=1..n ) od;
  • Mathematica
    A124051[n_, k_]:= Binomial[n+1,n-k+1]*Binomial[n+3,n-k+1];
    Table[A124051[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2025 *)
  • SageMath
    def A124051(n,k): return binomial(n+1,n-k+1)*binomial(n+3,n-k+1)
    print(flatten([[A124051(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 07 2025

Formula

From G. C. Greubel, Feb 07 2025: (Start)
T(n, k) = binomial(n+1, n-k+1)*binomial(n+3, n-k+1).
T(2*n, n) = (1/2)*A000894(n) + (5/2)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n)*(-1)^(n/2)*A286033((n+4)/2) + (1-(-1)^n)*((-1)^((n+1)/2)*A000108((n+1)/2) - 1) ). (End)

A151510 The triangle in A151338 read by rows upwards.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 0, 0, 1, 21, 140, 350, 301, 56, 0, 0, 1, 28, 266, 1050, 1701, 938, 91, 0, 0, 1, 36, 462, 2646, 6951, 7686, 2737, 126, 0, 0, 1, 45, 750, 5880, 22827, 42315, 32725, 7455, 126, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2009

Keywords

Comments

Columns 1-5 are A000012, A000217, A001296, A001297, and A001298. - Nathaniel Johnston, Apr 30 2011

Examples

			Triangle begins:
1
1 0
1 1  0
1 3  1   0
1 6  7   1    0
1 10 25  15   1    0
1 15 65  90   31   0   0
1 21 140 350  301  56  0  0
1 28 266 1050 1701 938 91 0 0
...
		

Extensions

Extended by Nathaniel Johnston, Apr 30 2011

A259455 n Sum_n Sum_n Sum_n.

Original entry on oeis.org

1, 30, 270, 1400, 5250, 15876, 41160, 95040, 200475, 393250, 726726, 1277640, 2153060, 3498600, 5508000, 8434176, 12601845, 18421830, 26407150, 37191000, 51546726, 70409900, 94902600, 126360000, 166359375, 216751626, 279695430, 357694120, 453635400, 570834000
Offset: 1

Views

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Comments

See the reference for an explanation of the rather cryptic definition.

Crossrefs

This is the seventh sequence in the sequence A000027, A000217, A002411, A001296, A108650, A001297, ...

Programs

  • Maple
    a:= n-> n^3*(n+3)*(n+2)*(n+1)^2/48:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 04 2015

Formula

From Alois P. Heinz, Jul 04 2015: (Start)
G.f.: (24*x^3+58*x^2+22*x+1)*x/(x-1)^8.
a(n) = n^3*(n+3)*(n+2)*(n+1)^2/48.
a(n) = n*Stirling2(n+3,n). (End)

Extensions

More terms from Alois P. Heinz, Jul 04 2015

A092371 Triangle read by rows: T(n, k) = binomial(n, k) * binomial(n+k, n-k).

Original entry on oeis.org

1, 6, 1, 18, 15, 1, 40, 90, 28, 1, 75, 350, 280, 45, 1, 126, 1050, 1680, 675, 66, 1, 196, 2646, 7350, 5775, 1386, 91, 1, 288, 5880, 25872, 34650, 16016, 2548, 120, 1, 405, 11880, 77616, 162162, 126126, 38220, 4320, 153, 1, 550, 22275, 205920, 630630
Offset: 1

Views

Author

Benoit Cloitre, Mar 20 2004

Keywords

Comments

Related to the coefficients of x^k y^k in the n-th power of x^2 + x*y + 2*x + y + 1. - F. Chapoton, Jan 04 2025

Examples

			Triangle starts:
  [1]   1;
  [2]   6,    1;
  [3]  18,   15,     1;
  [4]  40,   90,    28,     1;
  [5]  75,  350,   280,    45,     1;
  [6] 126, 1050,  1680,   675,    66,    1;
  [7] 196, 2646,  7350,  5775,  1386,   91,   1;
  [8] 288, 5880, 25872, 34650, 16016, 2548, 120, 1;
		

Crossrefs

First column = A002411, second column = A001297, third column = A107418, fourth column = A105251, fifth column = A104673.
Main diagonal = 1, second diagonal = A000384.
Cf. A063007, A006480 (central terms), A082759 (row sums + 1).
Cf. A104684.

Programs

  • Maple
    T := (n, k) -> binomial(n, k) * binomial(n+k, n-k):  # Peter Luschny, Jan 04 2025
  • PARI
    T(n,k) = binomial(n,k)*binomial(n+k,n-k)

Formula

T(n, k) = [x^(n-k)] F(-n, -n-k; 1; x). - Paul Barry, Sep 04 2008
Previous Showing 11-18 of 18 results.