cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 1773 results. Next

A105998 Semiprime function n -> A001358(n) applied four times to n.

Original entry on oeis.org

77, 119, 219, 235, 377, 381, 566, 634, 721, 779, 998, 1006, 1126, 1282, 1294, 1563, 1642, 1745, 1853, 1959, 1961, 2209, 2402, 2483, 2554, 2785, 3005, 3149, 3173, 3242, 3481, 3574, 3587, 3622, 4101, 4282, 4471, 4681, 4714, 4798, 4859, 4882, 5095, 5201
Offset: 1

Views

Author

Jonathan Vos Post, Apr 29 2005

Keywords

Examples

			a(1) = semiprime(semiprime(semiprime(semiprime(1)))) = semiprime(semiprime(semiprime(4))) = semiprime(semiprime(10)) = semiprime(26) = 77.
		

Crossrefs

Programs

  • Maple
    issp:= n-> not isprime(n) and numtheory[bigomega](n)=2:
    sp:= proc(n) option remember; local k; if n=1 then 4 else
           for k from 1+sp(n-1) while not issp(k) do od; k fi end:
    a:= n-> (sp@@4)(n):
    seq(a(n), n=1..44);  # Alois P. Heinz, Aug 16 2024
  • Mathematica
    f[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[ n]]; t = Select[ Range[ 5210], f[ # ] == 2 &]; Table[ Nest[ t[[ # ]] &, n, 4], {n, 45}] (* Robert G. Wilson v, Apr 30 2005 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A105998(n):
        def f(x): return int(x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A001358(n):
            m, k = n, f(n)+n
            while m != k:
                m, k = k, f(k)+n
            return m
        return A001358(A001358(A001358(A001358(n)))) # Chai Wah Wu, Aug 16 2024

Formula

Extensions

More terms from Robert G. Wilson v, Apr 30 2005

A105999 Semiprimeth recurrence: a(0) = 1, a(n+1) = semiprime(a(n)) = A001358(a(n)).

Original entry on oeis.org

1, 4, 10, 26, 77, 235, 779, 2785, 10643, 43697, 192893, 915218, 4657929, 25380749, 147721169, 916036271, 6037442989, 42191467826, 311911160465, 2434014941905, 20007995450483, 172911791611798, 1568190042677867
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2005

Keywords

Comments

Semiprime equivalent of R. G. Wilson's primeth recurrence: A007097.

Examples

			a(1) = A001358(1) = 4,
a(2) = A001358(a(1)) = A001358(4) = 10,
a(3) = A001358(a(2)) = A001358(10) = 26.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimePi[n_] := Sum[PrimePi[n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; NestList[SemiPrime@# &, 1, 18] (* Robert G. Wilson v, May 31 2006 *)

Extensions

a(5)-a(15) from Robert G. Wilson v, Apr 30 2005
a(16)-a(20) from Robert G. Wilson v, May 31 2006
a(21)-a(22) from Donovan Johnson, Sep 24 2010

A115709 Pentagonal numbers (A000326) whose digit reversal is a semiprime (A001358).

Original entry on oeis.org

12, 22, 51, 176, 330, 532, 590, 715, 782, 925, 1162, 1247, 1335, 1426, 1717, 3151, 3290, 4187, 5551, 7107, 7315, 7957, 10542, 10795, 11051, 11837, 12376, 14950, 15251, 15555, 15862, 16172, 17120, 19097, 19780, 20126, 22265, 24130, 24512, 26467, 26867, 30175
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			532 is the 19th pentagonal number and 235=5*47 is semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[PolygonalNumber[5,Range[200]],PrimeOmega[IntegerReverse[#]]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 27 2019 *)
  • Python
    from sympy import factorint
    def ok(p): return sum(e for e in factorint(int(str(p)[::-1])).values()) == 2
    print([p for p in (n*(3*n-1)//2 for n in range(143)) if ok(p)]) # Michael S. Branicky, Dec 22 2021

A065728 Partition numbers (A000041) that are semiprimes (A001358).

Original entry on oeis.org

15, 22, 77, 1255, 2012558, 2679689, 9289091, 18004327, 38887673, 56634173, 72533807, 82010177, 104651419, 2056148051, 2552338241, 20390982757, 27517052599, 118159068427, 749474411781, 5134205287973, 18028182516671
Offset: 1

Views

Author

Patrick De Geest, Nov 18 2001

Keywords

Comments

Enoch Haga asks if this is a finite sequence. The larger these numbers get, the more opportunity for more factors.

Examples

			E.g., the 808th partition number 8151756509675604512522473567 = 5963320232189 * 1366982853893003.
		

Crossrefs

Intersection of A001358 and A000041.

Programs

  • Mathematica
    Select[PartitionsP[Range[0,450]],PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 19 2016 *)
  • PARI
    { n=0; for (m=1, 10^9, p=numbpart(m); if (bigomega(p) == 2, write("b065728.txt", n++, " ", p); if (n==100, return)) ) } \\ Harry J. Smith, Oct 28 2009

Formula

A064911(a(n))*A167392(a(n)) = 1. [From Reinhard Zumkeller, Nov 03 2009]

Extensions

OFFSET changed from 0,1 to 1,1 by Harry J. Smith, Oct 28 2009

A152447 Decimal expansion of the sum_q 1/(q*(q-1)) over the semiprimes q = A001358.

Original entry on oeis.org

1, 7, 1, 0, 5, 1, 8, 9, 2, 9, 7, 9, 9, 9, 6, 6, 3, 6, 6, 2, 2, 2, 0, 2, 5, 6, 4, 3, 7, 2, 3, 7, 4, 2, 1, 3, 9, 9, 1, 2, 4, 6, 6, 1, 2, 0, 3, 5, 5, 0, 0, 5, 9, 7, 4, 9, 1, 0, 7, 9, 9, 7, 0, 7, 0, 0, 4, 6, 9, 9, 2, 9, 7, 2, 8, 4, 8, 1, 2, 7
Offset: 0

Views

Author

R. J. Mathar, Dec 04 2008

Keywords

Comments

The semiprime analog of A136141. To obtain the (smaller) sum over the squarefree semiprimes A006881, subtract the prime zeta functions of 4 ( A085964 ), 6, 8 etc. from this constant here. The first term in the representation as the geometric series in powers 1/q^s is in A117543 .

Formula

Equals 0.17105189297999663662220256437237421399124661203550059749107997... = 1/(4*3)+1/(6*5)+1/(9*8)+1/(10*9)+...

A259677 Octagonal numbers (A000567) that are semiprimes (A001358).

Original entry on oeis.org

21, 65, 133, 341, 481, 1541, 4033, 5461, 6533, 8321, 11041, 13333, 14981, 31621, 38081, 48133, 56033, 79381, 83333, 97921, 109061, 111361, 133141, 188501, 197633, 206981, 219781, 229633, 256961, 282133, 293281, 328021, 340033, 360533, 416641, 481601, 556421
Offset: 1

Views

Author

Colin Barker, Jul 03 2015

Keywords

Examples

			The octagonal number 21 is in the sequence because 21 = 3 * 7.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [2..500] | IsSemiprime(s) where s is n*(3*n-2) ]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    a={}; Do[If[PrimeOmega[n (3 n - 2)]==2, AppendTo[a, n(3 n - 2)]], {n, 1, 200}]; a (* Vincenzo Librandi, Jul 04 2015 *)
    Select[PolygonalNumber[8,Range[500]],PrimeOmega[#]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    select(n->bigomega(n)==2, vector(2000, n, pg(8, n)))
    

Formula

Equals A000567 intersect A001358.

A076343 A076340(A001358(n)), real part of semiprimes mapped as defined in A076340, A076341.

Original entry on oeis.org

4, 8, 15, 8, 16, 17, 31, 24, 15, 24, 47, 32, 33, 40, 49, 48, 63, 65, 49, 79, 56, 64, 47, 95, 72, 95, 80, 63, 88, 113, 97, 127, 96, 81, 104, 145, 97, 120, 129, 143, 120, 161, 175, 159, 136, 191, 144, 145, 111, 144, 129, 160, 209, 191, 168, 143, 239, 176, 241, 143
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 08 2002

Keywords

Examples

			Applying the map as defined in A076340, A076341:
A001358(15)=39=3*13=(4-1)*(12+1) -> (4,-1)*(12,1) = (4*12+1,4-12) = (49,-8), therefore a(15)=49 and A076344(120)=-8.
		

Crossrefs

Imaginary part = A076344, A076342, A076347.

A076344 A076341(A001358(n)), imaginary part of semiprimes mapped as defined in A076340, A076341.

Original entry on oeis.org

0, -2, -8, 2, -2, 0, -12, -2, 8, 2, -16, 2, 4, -2, -8, -2, -16, -12, 8, -24, 2, -2, 16, -28, 2, -20, 2, 20, -2, -24, -4, -36, -2, 16, 2, -32, 20, -2, -8, -24, 2, -36, -48, -28, -2, -52, -2, 0, 32, 2, 28, -2, -48, -32, -2, 24, -64, 2, -56, 40, -4, 2, -72, 2, -20, 44, -2, -32, -76, -2
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 08 2002

Keywords

Examples

			Applying the map as defined in A076340, A076341:
A001358(15)=39=3*13=(4-1)*(12+1) -> (4,-1)*(12,1) = (4*12+1,4-12) = (49,-8), therefore a(15)=-8 and A076343(15)=49.
		

Crossrefs

Real part = A076343, A070750, A076348.

A104012 Indices of centered dodecahedral numbers (A005904) which are semiprimes (A001358).

Original entry on oeis.org

1, 2, 3, 5, 6, 11, 14, 15, 21, 26, 30, 35, 36, 44, 54, 63, 69, 74, 81, 114, 128, 131, 135, 138, 153, 165, 168, 191, 194, 209, 216, 224, 228, 231, 239, 261, 270, 303, 315, 321, 323, 326, 330, 336, 345, 363, 380, 384, 398, 404, 410, 411, 414, 429, 440, 443, 455, 468, 470
Offset: 1

Views

Author

Jonathan Vos Post, Feb 24 2005

Keywords

Comments

Because the cubic polynomial for centered dodecahedral numbers factors into n time an irreducible quadratic, the dodecahedral numbers can never be prime, but can be semiprime iff (2*n+1) is prime and (5*n^2+5*n+1) is prime. Centered dodecahedral numbers (A005904) are not to be confused with dodecahedral numbers (A006566) = n(3n-1)(3n-2)/2, nor with rhombic dodecahedral numbers (A005917).
Intersection of A005097 and A090563. - Michel Marcus, Apr 30 2016

Examples

			a(1) = 1 because A005904(1) = 33 = 3 * 11, which is semiprime.
a(2) = 2 because A005904(2) = 155 = 5 * 31, which is semiprime.
a(3) = 3 because A005904(3) = 427 = 7 * 61, which is semiprime.
a(4) = 5 because A005904(5) = 1661 = 11 * 151.
194 is in this sequence because A005904(194) = 73579739 = 389 * 189151, which is semiprime.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(2*n+1) && isprime(5*n^2+5*n+1); \\ Michel Marcus, Apr 30 2016

Formula

n such that A001222(A005904(n)) = 2. n such that Bigomega((2*n+1)*(5*n^2 + 5*n + 1)) is 2. n such that A104011(n) = 2.

A113173 Ascending descending base exponent transform of semiprimes (A001358).

Original entry on oeis.org

256, 5392, 315361, 11667713, 717360537, 83932270482, 27775696582531, 22260761742531649, 109563850113131234720, 2013390472722146301196, 1899501614194512059559835, 85600281199526209989968735
Offset: 1

Views

Author

Jonathan Vos Post, Jan 07 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. a(7) is itself semiprime. The smallest primes in this sequence are a(3) = 315361 and a(4) = 11667713. What is the next prime?

Examples

			a(1) = 256 because semiprime(1)^semiprime(1) = 4^4 = 256.
a(2) = 5392 because prime(1)^prime(2) + prime(2)^prime(1) = 4^6 + 6^4 = 5392.
a(3) = 315361 because 4^9 + 6^6 + 9^4 = 315361.
a(4) = 11667713 = 4^10 + 6^9 + 9^6 + 10^4.
a(5) = 717360537 = 4^14 + 6^10 + 9^9 + 10^6 + 14^4.
a(6) = 83932270482 = 4^15 + 6^14 + 9^10 + 10^9 + 14^6 + 15^4.
a(7) = 27775696582531 = 4^21 + 6^15 + 9^14 + 10^10 + 14^9 + 15^6 + 21^4.
a(8) = 22260761742531649 = 4^22 + 6^21 + 9^15 + 10^14 + 14^10 + 15^9 + 21^6 + 22^4.
a(9) = 109563850113131234720 = 4^25 + 6^22 + 9^21 + 10^15 + 14^14 + 15^10 + 21^9 + 22^6 + 25^4.
		

Crossrefs

Programs

  • Mathematica
    A001358[A001358%5Bk%5D%5B%5Bk%5D%5D)%5E((A001358%5Bn%20-%20k%20+%201%5D%5B%5Bn%20-%20k%20+%201%5D%5D)),%20%7Bk,%201,%20n%7D%5D,%20%7Bn,%201,%2010%7D%5D%20(*%20_G.%20C.%20Greubel">] := Select[Range[100], PrimeOmega[#] == 2 &]; Table[Sum[(A001358[k][[k]])^((A001358[n - k + 1][[n - k + 1]])), {k, 1, n}], {n, 1, 10}] (* _G. C. Greubel, May 19 2017 *)

Formula

a(n) = Sum_{i=1..n} (semiprime(i))^(semiprime(n-i+1)).
a(n) = Sum_{i=1..n} (A001358(i))^(A001358(n-i+1)).
Previous Showing 21-30 of 1773 results. Next