cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 1774 results. Next

A123665 a(n) = Sum_{k=1..21} n^A001358(k).

Original entry on oeis.org

22, 471260364628084305, 6457022669043550542502557676, 105149403852520725445003265581519105, 41911381174488637014293971538580334000626
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Crossrefs

Programs

  • Magma
    [1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 +
    n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 + n^55 + n^57 + n^58: n in [1..50]]; // G. C. Greubel, Oct 26 2017
  • Mathematica
    Table[1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 +
      n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 +
      n^55 + n^57 + n^58, {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    for(n=1,50, print1(1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 + n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 + n^55 + n^57 + n^58, ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

a(n) = 1 +n^4 +n^6 +n^9 +n^10 +n^14 +n^15 +n^21 +n^22 +n^25 +n^26 + n^33 +n^34 +n^35 +n^38 +n^39 +n^46 +n^49 +n^51 +n^55 +n^57 +n^58.

Extensions

Better name from Joerg Arndt, May 23 2021

A218172 Centered 12-gonal numbers which are semiprimes, intersection of A003154 and A001358.

Original entry on oeis.org

121, 253, 793, 1261, 1441, 1633, 1837, 2773, 3601, 3901, 4213, 4537, 4873, 5221, 7141, 9841, 11881, 14113, 14701, 16537, 17173, 17821, 19153, 19837, 21241, 22693, 23437, 24193, 24961, 28153, 28981, 29821, 30673, 34201, 37921, 38881, 39853, 40837, 41833, 43861, 45937, 48061, 49141, 50233, 53581, 55873
Offset: 1

Views

Author

Zak Seidov, Oct 22 2012

Keywords

Comments

Might also be called 'semiprime star numbers'.
A083749 and A006061 are subsequences.

Examples

			a(1) = 121 = 11^2 = A001358(40) = A003154(5) = A083749(1) = A006061(1) = A078972(11).
a(2) = 253 = 11*23 = A001358(81) = A003154(7) = A083749(2) = A078972(18).
		

Crossrefs

Programs

  • Mathematica
    Select[Table[6n(n-1)+1,{n,100}],PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    lista(nn) = {for (n = 1, nn, if (bigomega(v = 6*n*(n-1) + 1) == 2, print1(v, ", ")););} \\ Michel Marcus, Nov 09 2013

A228170 The least semiprime (A001358) such that between it and the next n semiprimes, but not the next n+1 semiprimes, there are no primes.

Original entry on oeis.org

9, 33, 91, 141, 115, 213, 1382, 1639, 1133, 2558, 2973, 1329, 15685, 16143, 9974, 35678, 34063, 43333, 19613, 107381, 162145, 44294, 404599, 461722, 838259, 155923, 535403, 492117, 396737, 2181739, 370262, 1468279, 6034249, 3933601, 1671783, 25180174, 1357203
Offset: 1

Views

Author

Keywords

Comments

If prime_omega(n) as defined as A001222 and a set of values becomes a string, then the 'just' means that its string is not a substring of some larger string. See the example below.
Yet another way to think of this is that between any two consecutive primes there are 'just' n semiprimes with the first one being cited above.
a(91) > 1.8*10^12. - Giovanni Resta, Aug 15 2013

Examples

			a(1) = 9 because between 9 and 10 there are no primes;
a(2) = 33 because between 33 and 35 (the second semiprime past 33) there are no primes;
a(3) = 91 because between 91 and 95 (the third semiprime past 91 with 93 & 94 also semiprimes) there are no primes;
a(4) = 141 because between 141 and 146 (the fourth semiprime past 141 with 142, 143 & 145 also being semiprimes) there are no primes;
the reason a(4) is not 115 is because although there are no primes between 115 and 121, the string "2, 3, 3, 2, 2, 5, 2, 2" is a substring of the string generated by 115 through 123. See the next line.
a(5) = 115 because between 115 and 123 (the fifth semiprime past 115 with 118, 119, 121, and 122 also being semiprimes) there are no primes;
		

Crossrefs

Programs

  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; t = Table[0, {100}]; p=3; While[p < 3100000000, q = NextPrime[p]; a = Count[ PrimeOmega[ Range[p, q]], 2]; If[ t[[a]] == 0, t[[a]] = p; Print[{p, a}]]; p = q]; NextSemiPrime@# & /@ t

Formula

a(n) is the next semiprime after A228171(n+1).

A330477 Semiprimes (A001358) p*q such that p*q+p+q is also a semiprime.

Original entry on oeis.org

9, 22, 25, 39, 62, 69, 77, 87, 91, 94, 95, 106, 115, 119, 121, 122, 133, 134, 142, 146, 159, 183, 187, 202, 213, 214, 218, 219, 226, 235, 237, 249, 253, 259, 262, 265, 274, 287, 289, 291, 299, 303, 305, 309, 314, 335, 362, 381, 386, 393, 403, 411, 417, 422, 446, 458, 469, 473, 489, 501, 502, 505
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 15 2019

Keywords

Examples

			a(3) = 25 is a member because 25 = 5*5 and 25+5+5 = 5*7 is also a semiprime.
		

Crossrefs

Cf. A001358.
Contains A108570.

Programs

  • Maple
    N:= 1000:
    Primes:= select(isprime, [2,seq(i,i=3..N)]):
    SP:= sort([seq(seq([p,q],q=select(t -> t >= p and p*t<=N, Primes)),p=Primes)],(a,b) -> a[1]*a[2] t[1]*t[2], select(t -> numtheory:-bigomega(t[1]*t[2]+t[1]+t[2])=2, SP));
  • Mathematica
    Select[Union@ Apply[Join, Table[Flatten@{p #, Sort[{p, #}]} & /@ Prime@ Range@ PrimePi@ Floor[Max[#]/p], {p, #}]] &@ Prime@ Range@ 97, PrimeOmega[Total@ #] == 2 &][[All, 1]] (* Michael De Vlieger, Dec 15 2019 *)
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List()); forprime(p=2, sqrtint(lim\=1), forprime(q=p, lim\p, if(issemi(p*q+p+q), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Dec 16 2019
    
  • Python
    from sympy import factorint
    def is_semiprime(n): return sum(e for e in factorint(n).values()) == 2
    def ok(n):
        f = factorint(n, multiple=True)
        if len(f) != 2: return False
        p, q = f
        return len(factorint(p*q + p + q, multiple=True)) == 2
    print(list(filter(ok, range(506)))) # Michael S. Branicky, Sep 22 2021

A383468 Semiprimes s = A001358(k) such that k, s - k and s + k are also semiprimes.

Original entry on oeis.org

10, 15, 141, 166, 274, 298, 299, 687, 995, 1115, 1227, 1299, 1345, 1891, 1945, 2194, 2661, 2998, 3093, 3287, 3566, 3781, 3902, 4174, 4262, 4497, 4798, 5378, 5414, 5758, 6609, 7094, 7666, 8354, 8434, 9566, 10041, 10342, 11051, 11091, 11486, 11582, 11702, 12279, 12574, 13154, 13346, 13387, 13466
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Apr 27 2025

Keywords

Comments

Except for a(1) = 10 = A001358(4), s and k always have different parities.

Examples

			a(3) = 141 is a term because 141 = 3 * 47 = A001358(46) is a semiprime and 46 = 2 * 23, 141 - 46 = 95 = 5 * 19 and 141 + 46 = 187 = 11 * 17 are all semiprimes.
		

Crossrefs

Programs

  • Maple
    k:= 0: R:= NULL: count:= 0:
    for s from 1 while count < 100 do
      if numtheory:-bigomega(s) = 2 then
        k:= k+1;
        if andmap(t -> numtheory:-bigomega(t) = 2, [k, s-k, s+k]) then
          R:= R, s; count:= count+1;
        fi
      fi;
    od:
    R;

Formula

a(n) = A001358(A383469(n)).

A383469 Semiprimes k such that A001358(k) + k and A001358(k) - k are also semiprimes.

Original entry on oeis.org

4, 6, 46, 55, 87, 93, 94, 206, 298, 326, 362, 382, 394, 542, 562, 629, 758, 841, 866, 926, 993, 1046, 1079, 1147, 1167, 1234, 1317, 1469, 1477, 1561, 1774, 1895, 2047, 2227, 2245, 2515, 2638, 2705, 2894, 2902, 3007, 3031, 3063, 3202, 3269, 3409, 3453, 3466, 3487, 3809, 3891, 4058, 4174, 4207
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Apr 27 2025

Keywords

Examples

			a(3) = 46 is a term because 46 = 2 * 23 is a semiprime, A001358(46) = 141, and 141 - 46 = 95 = 5 * 19 and 141 + 46 = 187 = 11 * 17 are semiprimes.
		

Crossrefs

Programs

  • Maple
    k:= 0: K:= NULL: count:= 0:
    for s from 1 while count < 100 do
      if numtheory:-bigomega(s) = 2 then
        k:= k+1;
        if andmap(t -> numtheory:-bigomega(t) = 2, [k, s-k, s+k]) then
          K:= K, k; count:= count+1;
        fi
      fi;
    od:
    K;

Formula

A001358(a(k)) = A383468(k).

A072165 Values of Moebius function of the products of two (not necessarily distinct) primes (semiprimes or 2-almost primes, A001358).

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Jani Melik, Jun 28 2002

Keywords

Comments

Characteristic function for numbers n such that A001358(n) is not a square. - Antti Karttunen, Oct 04 2017

Examples

			For n = 2995, A001358(2995) = 11449 = 107^2, and as Moebius mu is zero for squares, we have a(2995) = 0. - _Antti Karttunen_, Oct 04 2017
		

Crossrefs

Programs

  • Maple
    semiprimes := proc(d_n) local a,i; a := [ ]; for i from 1 to d_n do if((tau(i) = 3) or ((mobius(i) <> 0) and (tau(i) = 4))) then a := [ op(a), mobius(i) ]; fi; od: RETURN(a); end;

Formula

a(n) = A008683(A001358(n)). - Antti Karttunen, Oct 04 2017

Extensions

More terms from Antti Karttunen, Oct 04 2017

A073411 cototient(x) - 1 where x are the odd semiprimes (i.e., x are odd terms in A001358).

Original entry on oeis.org

2, 6, 8, 4, 12, 10, 14, 6, 18, 14, 20, 16, 24, 16, 20, 30, 18, 32, 22, 38, 26, 22, 10, 42, 44, 24, 48, 22, 32, 34, 54, 28, 12, 60, 62, 40, 26, 68, 34, 44, 28, 72, 46, 36, 74, 28, 50, 80, 30, 84, 32, 42, 56, 90, 46, 16, 98, 62, 34, 48, 102, 64, 104, 38, 108, 34, 110, 52, 70
Offset: 1

Views

Author

Benoit Cloitre, Aug 23 2002

Keywords

Comments

If the Goldbach conjecture is true, all even numbers appear at least once in the sequence since pq - phi(pq) - 1 = p + q.

Crossrefs

Cf. A001358 (semiprimes), A046315 (odd semiprimes), A051953 (cototient).

Programs

  • Mathematica
    Map[# - EulerPhi@ # - 1 &, Select[Range[1, 335, 2], PrimeOmega # == 2 &]] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    lista(nn) = forstep(n=1, nn, 2, if (bigomega(n)==2, print1(n-eulerphi(n)-1, ", "))); \\ Michel Marcus, Jul 30 2017

Formula

a(n) = A051953(A046315(n)) - 1. - Michel Marcus, Jul 30 2017; corrected Dec 29 2020

A099980 Bisection of A001358.

Original entry on oeis.org

4, 9, 14, 21, 25, 33, 35, 39, 49, 55, 58, 65, 74, 82, 86, 91, 94, 106, 115, 119, 122, 129, 134, 142, 145, 155, 159, 166, 177, 183, 187, 201, 203, 206, 213, 215, 218, 221, 235, 247, 253, 259, 265, 274, 287, 291, 298, 301, 303, 309, 319, 323, 327, 334, 339, 346
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Crossrefs

Cf. A001358.

Programs

  • Maple
    P:=[seq(ithprime(n),n=1..100)]: B:={seq(seq(P[i]*P[j],j=1..100),i=1..100)}:C:={seq(B[k],k=1..140)}: seq(C[2*j-1],j=1..70); # Emeric Deutsch, Dec 14 2004
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A099980(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int((n<<1)+1+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1)))
        return bisection(f,(n<<1)+1,(n<<1)+1) # Chai Wah Wu, Oct 23 2024

Extensions

More terms from Emeric Deutsch, Dec 14 2004

A099981 Bisection of A001358.

Original entry on oeis.org

6, 10, 15, 22, 26, 34, 38, 46, 51, 57, 62, 69, 77, 85, 87, 93, 95, 111, 118, 121, 123, 133, 141, 143, 146, 158, 161, 169, 178, 185, 194, 202, 205, 209, 214, 217, 219, 226, 237, 249, 254, 262, 267, 278, 289, 295, 299, 302, 305, 314, 321, 326, 329, 335, 341, 355
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Programs

  • Maple
    P:=[seq(ithprime(n),n=1..100)]: B:={seq(seq(P[i]*P[j],j=1..100),i=1..100)}:C:={seq(B[k],k=1..140)}: seq(C[2*j],j=1..70); # Emeric Deutsch, Dec 14 2004

Extensions

More terms from Emeric Deutsch, Dec 14 2004
Previous Showing 51-60 of 1774 results. Next