cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A168422 Number triangle with row sums given by quadruple factorial numbers A001813.

Original entry on oeis.org

1, 1, 1, 7, 4, 1, 71, 39, 9, 1, 1001, 536, 126, 16, 1, 18089, 9545, 2270, 310, 25, 1, 398959, 208524, 49995, 7120, 645, 36, 1, 10391023, 5394991, 1301139, 190435, 18445, 1197, 49, 1, 312129649, 161260336, 39066076, 5828704, 589750, 41776, 2044, 64, 1
Offset: 0

Views

Author

Paul Barry, Nov 25 2009

Keywords

Comments

Reversal of coefficient array for the polynomials P(n,x) = Sum_{k=0..n} (C(n+k,2k)*(2k)!/k!)*x^k*(1-x)^(n-k).
Note that P(n,x) = Sum_{k=0..n} A113025(n,k)*x^k*(1-x)^(n-k). Row sums are A001813.

Examples

			Triangle begins
          1
          1         1
          7         4        1
         71        39        9       1
       1001       536      126      16      1
      18089      9545     2270     310     25     1
     398959    208524    49995    7120    645    36    1
   10391023   5394991  1301139  190435  18445  1197   49  1
  312129649 161260336 39066076 5828704 589750 41776 2044 64 1
Production matrix begins
        1       1
        6       3       1
       40      20       5      1
      336     168      42      7     1
     3456    1728     432     72     9    1
    42240   21120    5280    880   110   11   1
   599040  299520   74880  12480  1560  156  13  1
  9676800 4838400 1209600 201600 25200 2520 210 15 1
Complete this with a top row (1,0,0,0,...) and invert: we get
    1
   -1   1
   -3  -3   1
   -5  -5  -5   1
   -7  -7  -7  -7   1
   -9  -9  -9  -9  -9   1
  -11 -11 -11 -11 -11 -11   1
  -13 -13 -13 -13 -13 -13 -13   1
  -15 -15 -15 -15 -15 -15 -15 -15   1
  -17 -17 -17 -17 -17 -17 -17 -17 -17   1
		

Crossrefs

Column 1 is |A002119|.
Sum_{k=0..n} T(n,k) * 2^k, is A001517(n).
Cf. A079267.

Programs

  • PARI
    T(n,k)={sum(j=k, n, (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!))/k!} \\ Andrew Howroyd, Mar 24 2023
  • SageMath
    def T(n,k):
        return(sum((-1)^(j-k) * binomial(2*n-j,n) * binomial(n,j)\
         * binomial(j,k) * factorial(n-j)\
         for j in range(k,n+1))) # William P. Orrick, Mar 24 2023
    

Formula

T(n,k) = (1/k!)*Sum_{j=k..n} (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!).

Extensions

Corrected and extended by William P. Orrick, Mar 24 2023

A272648 a(n) = A002119(n) mod 7.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2016

Keywords

Comments

Periodic with period 14.

Crossrefs

Programs

  • GAP
    b:=[1,-1];; for n in [3..95] do b[n]:=-2*(2*n-3)*b[n-1]+b[n-2]; od; a:=List(b,AbsInt) mod 7; # Muniru A Asiru, Sep 20 2018
  • Maple
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n) mod 7, n=0..120)];
  • Mathematica
    PadRight[{},120,{1,1,0,1,0,1,1,6,6,0,6,0,6,6}] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    Vec((1+x+x^3+x^5+x^6)*(1+6*x^7)/((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50)) \\ Colin Barker, May 10 2016
    

Formula

G.f.: (1+x+x^3+x^5+x^6)*(1+6*x^7) / ((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, May 10 2016
a(n) = (-m^6+18*m^5-122*m^4+384*m^3-549*m^2+270*m+24)*(7-5*(-1)^floor(n/7))/48, where m = (n mod 7). - Luce ETIENNE, Sep 21 2018

A307495 Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k.

Original entry on oeis.org

1, 1, 3, 12, 57, 312, 1950, 13848, 111069, 998064, 9957186, 109305240, 1309637274, 17006109072, 237888664572, 3566114897520, 57030565449765, 969154436550240, 17439499379433690, 331268545604793240, 6624013560942038670, 139080391965533653200, 3059323407592802838180, 70355685298375014175440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Catalan transform of A000142 (factorial numbers).
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence of factorial numbers in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
1
1 1
2 3 3
6 9 12 12
24 33 45 57 57
120 153 198 255 312 312
...
Alternatively, the sequence can be obtained by multiplying the sequence of factorial numbers by the array A106566.
(End)

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]]

Formula

G.f.: 1 /(1 - x*c(x)/(1 - x*c(x)/(1 - 2*x*c(x)/(1 - 2*x*c(x)/(1 - 3*x*c(x)/(1 - 3*x*c(x)/(1 - ...))))))), a continued fraction, where c(x) = g.f. of Catalan numbers (A000108).
Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000142.
a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*k! for n > 0.
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Aug 10 2019

A369723 Expansion of e.g.f. exp( 2 * (1-sqrt(1-4*x)) ).

Original entry on oeis.org

1, 4, 24, 208, 2464, 37824, 720256, 16450816, 439245312, 13440572416, 464007387136, 17847329869824, 757011972726784, 35108108023349248, 1767517592731090944, 96007679735852498944, 5596725706163142393856, 348533116657888468402176
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(2*(1-sqrt(1-4*x)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 4^(n-k) * (n-1+k)! / (k! * (n-1-k)!).
a(n) = 2*(2*n-3)*a(n-1) + 16*a(n-2).

A369724 Expansion of e.g.f. exp( (5/2) * (1-sqrt(1-4*x)) ).

Original entry on oeis.org

1, 5, 35, 335, 4225, 67525, 1321075, 30751775, 832573025, 25745985125, 896177819875, 34698406783375, 1479737530398625, 68935386567921125, 3483762766656021875, 189846574063623209375, 11098195364856546690625, 692834276972696475053125
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(5/2*(1-sqrt(1-4*x)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 5^(n-k) * (n-1+k)! / (k! * (n-1-k)!).
a(n) = 2*(2*n-3)*a(n-1) + 25*a(n-2).

A079166 Square array read by antidiagonals of T(n,k)=(4k-2)*T(n,k-1)+T(n,k-2) with T(n,0)=1 and T(n,1)=n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 10, 7, 2, 1, 141, 71, 13, 3, 1, 2548, 1001, 132, 19, 4, 1, 56197, 18089, 1861, 193, 25, 5, 1, 1463670, 398959, 33630, 2721, 254, 31, 6, 1, 43966297, 10391023, 741721, 49171, 3581, 315, 37, 7, 1, 1496317768, 312129649, 19318376, 1084483
Offset: 0

Views

Author

Henry Bottomley, Dec 31 2002

Keywords

Examples

			Rows start: 1,0,1,10,141,2548,56197,...; 1,1,7,71,1001,18089,398959,...; 1,2,13,132,1861,33630,741721,...; 1,3,19,193,2721,49171,1084483,...; etc.
		

Crossrefs

Rows include A002119 (unsigned), A079165, A001517. Columns include A000012, A001477, A016921 (offset).

Formula

T(n, k) =2*T(n-1, k)-T(n-2, k). T(n, k)/T(1, k) tends to ( (n-1)*e - (n-3) )/2 as k increases: e.g. T(3, k)/T(1, k) tends to e.

A072331 a(n) = 2^(n-1) * Sum_{k=0..n} ((n+k)!/(n-k)!)/k!.

Original entry on oeis.org

3, 38, 772, 21768, 786736, 34703456, 1807726656, 108602413184, 7392195003136, 562241229891072, 47257832090862592, 4349969517278922752, 435185983056255725568, 47017486048144734052352
Offset: 1

Views

Author

Benoit Cloitre, Jul 31 2002

Keywords

Crossrefs

Cf. A001517.

Programs

  • Mathematica
    Table[2^(n-1) Sum[((n+k)!/(n-k)!)/k!,{k,0,n}],{n,15}] (* Harvey P. Dale, May 22 2012 *)

Extensions

Definition clarified by Harvey P. Dale, May 22 2012

A360441 Triangle read by rows: T(n,k) is the number of pairs (c,m), where c is a covering of the 1 X (2n) grid with 1 X 2 rectangles and equal numbers of red and blue 1 X 1 squares and m is a matching between red squares and blue squares, such that exactly k matched pairs are adjacent.

Original entry on oeis.org

1, 1, 2, 7, 8, 4, 71, 78, 36, 8, 1001, 1072, 504, 128, 16, 18089, 19090, 9080, 2480, 400, 32, 398959, 417048, 199980, 56960, 10320, 1152, 64, 10391023, 10789982, 5204556, 1523480, 295120, 38304, 3136, 128, 312129649, 322520672, 156264304, 46629632, 9436000, 1336832, 130816, 8192, 256
Offset: 0

Views

Author

William P. Orrick, Mar 08 2023

Keywords

Comments

If row elements are divided by row sums, one obtains a probability distribution that approaches a Poisson distribution with expected value 1 as n approaches infinity.

Examples

			Triangle begins:
         1
         1        2
         7        8       4
        71       78      36       8
      1001     1072     504     128     16
     18089    19090    9080    2480    400    32
    398959   417048  199980   56960  10320  1152   64
  10391023 10789982 5204556 1523480 295120 38304 3136 128
		

Crossrefs

Column 1 is |A002119|.
T(n,k) equals 2^k times the corresponding element of the triangle of A168422.
Sum of row n is A001517(n).
Cf. A253667.

Programs

  • SageMath
    def T(n,k):
        return(2^k*sum((-1)^(j-k)*binomial(2*n-j,n)*binomial(n,j)\
         *binomial(j,k)*factorial(n-j) for j in range(k,n+1)))

Formula

T(n,k) equals 2^k times the corresponding element of the triangle of A168422.
T(n,k) = 2^k * Sum_{j=k..n} (-1)^(j-k) * C(2*n-j,n) * C(n,j) * C(j,k) * (n-j)!.
Recurrence: T(n,k) = (1/k!) * Sum_{j=0..k} T(n-j,0) * (-1)^j * C(k,j) * Sum_{t=0..min(j,k-j)} (-1)^(j-t) * C(j,t) * (k-j)! / (k-j-t)!
= (1/k!) * Sum_{j=0..k} T(n-j,0) * (-1)^j * C(k,j) * R(k,j) where R(k,j) is an element of the triangle of A253667.
Previous Showing 21-28 of 28 results.