cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 135 results. Next

A122542 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 2, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 8, 6, 1, 0, 2, 12, 18, 8, 1, 0, 2, 16, 38, 32, 10, 1, 0, 2, 20, 66, 88, 50, 12, 1, 0, 2, 24, 102, 192, 170, 72, 14, 1, 0, 2, 28, 146, 360, 450, 292, 98, 16, 1, 0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 19 2006, May 28 2007

Keywords

Comments

Riordan array (1, x*(1+x)/(1-x)). Rising and falling diagonals are the tribonacci numbers A000213, A001590.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 2,  1;
  0, 2,  4,   1;
  0, 2,  8,   6,   1;
  0, 2, 12,  18,   8,    1;
  0, 2, 16,  38,  32,   10,   1;
  0, 2, 20,  66,  88,   50,  12,   1;
  0, 2, 24, 102, 192,  170,  72,  14,   1;
  0, 2, 28, 146, 360,  450, 292,  98,  16,  1;
  0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1;
		

Crossrefs

Other versions: A035607, A113413, A119800, A266213.
Sums include: A000007, A001333 (row), A001590 (diagonal), A007483, A057077 (signed row), A078016 (signed diagonal), A086901, A091928, A104934, A122558, A122690.

Programs

  • Haskell
    a122542 n k = a122542_tabl !! n !! k
    a122542_row n = a122542_tabl !! n
    a122542_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [0, 1])
    -- Reinhard Zumkeller, Jul 20 2013, Apr 17 2013
    
  • Magma
    function T(n, k) // T = A122542
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x)/(1 - (1+y)x - y x^2) + O[x]^11, x] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 0, T[n-1,k-1] +T[n-1,k] +T[n-2,k- 1] ]]; (* T = A122542 *)
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2024 *)
  • Sage
    def A122542_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (0..n)]
    for n in (0..10): print(A122542_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

Sum_{k=0..n} x^k*T(n,k) = A000007(n), A001333(n), A104934(n), A122558(n), A122690(n), A091928(n) for x = 0, 1, 2, 3, 4, 5. - Philippe Deléham, Jan 25 2012
Sum_{k=0..n} 3^(n-k)*T(n,k) = A086901(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007483(n-1), n >= 1. - Philippe Deléham, Oct 08 2006
T(2*n, n) = A123164(n).
T(n, k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), n > 1. - Philippe Deléham, Jan 25 2012
G.f.: (1-x)/(1-(1+y)*x-y*x^2). - Philippe Deléham, Mar 02 2012
From G. C. Greubel, Oct 27 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A057077(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001590(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A078016(n). (End)

A232543 Indices of primes in A100683.

Original entry on oeis.org

1, 2, 3, 4, 7, 11, 12, 27, 32, 119, 127, 136, 611, 755, 872, 1676, 5363, 15623, 27564, 42679, 54576, 74123, 91043, 104331
Offset: 1

Views

Author

Robert Price, Nov 25 2013

Keywords

Comments

a(25) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={-1,2,2};Print[1],Print[2];For[n=3,n<=1000,n++,sum=Plus@@a;If[PrimeQ[sum],Print[n]];a=RotateLeft[a]; a[[3]]=sum]

Formula

A100683(a(n)) = A232542(n). - Arthur O'Dwyer, 25 Jul 2024

Extensions

Name clarified by Arthur O'Dwyer, Jul 25 2024

A136175 Tribonacci array, T(n,k).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 11, 9, 8, 13, 20, 17, 15, 10, 24, 37, 31, 28, 19, 12, 44, 68, 57, 51, 35, 22, 14, 81, 125, 105, 94, 64, 41, 26, 16, 149, 230, 193, 173, 118, 75, 48, 30, 18, 274, 423, 355, 318, 217, 138, 88, 55, 33, 21, 504, 778, 653, 585, 399, 254, 162, 101, 61, 39, 23
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2007

Keywords

Comments

As an interspersion (and dispersion), the array is, as a sequence, a permutation of the positive integers. Column k consists of the numbers m such that the least summand in the tribonacci representation of m is T(1,k). For example, column 1 consists of numbers with least summand 1. This array arises from tribonacci representations in much the same way that the Wythoff array, A035513, arises from Fibonacci (or Zeckendorf) representations.
From Abel Amene, Jul 29 2012: (Start)
(Row 1) = A000073 (offset=4) a(0)=0, a(1)=0, a(2)=1
(Row 2) = A001590 (offset=5) a(0)=0, a(1)=1, a(2)=0
(Row 3) = A000213 (offset=4) a(0)=1, a(1)=1, a(2)=1
(Row 4) = A214899 (offset=5) a(0)=2, a(1)=1, a(2)=2
(Row 5) = A020992 (offset=6) a(0)=0, a(1)=2, a(2)=1
(Row 6) = A100683 (offset=6) a(0)=-1,a(1)=2, a(2)=2
(Row 7) = A135491 (offset=4) a(0)=2, a(1)=4, a(2)=8
(Row 8) = A214727 (offset=6) a(0)=1, a(1)=1, a(2)=2
(Row 9) = A081172 (offset=8) a(0)=1, a(1)=1, a(2)=0
(column 1) = A003265
(column 2) = A353083
(End) [Corrected and extended by John Keith, May 09 2022]

Examples

			Northwest corner:
1  2   4   7   13  24   44   81  149 274 504
3  6   11  20  37  68   125  230 423 778
5  9   17  31  57  105  193  355 653
8  15  28  51  94  173  318  585
10 19  35  64  118 217  399
12 22  41  75  138 254
14 26  48  88  162
16 30  55 101
18 33  61
21 39
23
		

Crossrefs

Programs

  • Maple
    # maximum index in A73 such that A73 <= n.
    A73floorIdx := proc(n)
        local k ;
        for k from 3 do
            if A000073(k) = n then
                return k ;
            elif A000073(k) > n then
                return k -1 ;
            end if ;
        end do:
    end proc:
    # tribonacci expansion coeffs of n
    A278038 := proc(n)
        local k,L,nres ;
        k := A73floorIdx(n) ;
        L := [1] ;
        nres := n-A000073(k) ;
        while k >= 4 do
            k := k-1 ;
            if nres >= A000073(k) then
                L := [1,op(L)] ;
                nres := nres-A000073(k) ;
            else
                L := [0,op(L)] ;
            end if ;
        end do:
        return L ;
    end proc:
    A278038inv := proc(L)
        add( A000073(i+2)*op(i,L),i=1..nops(L)) ;
    end proc:
    A135175 := proc(n,k)
        option remember ;
        local a,known,prev,nprev,kprev,freb ;
        if n =1 then
            A000073(k+2) ;
        elif k>3 then
            procname(n,k-1)+procname(n,k-2)+procname(n,k-3) ;
        else
            if k = 1 then
                for a from 1 do
                    known := false ;
                    for nprev from 1 to n-1 do
                        for kprev from 1 do
                            if procname(nprev,kprev) > a then
                                break ;
                            elif procname(nprev,kprev) = a then
                                known := true ;
                            end if;
                        end do:
                    end do:
                    if not known then
                        return a ;
                    end if;
                end do:
            else
                prev := procname(n,k-1) ;
                freb := A278038(prev) ;
                return A278038inv([0,op(freb)]) ;
            end if;
        end if;
    end proc:
    seq(seq(A135175(n,d-n),n=1..d-1),d=2..12) ; # R. J. Mathar, Jun 07 2022

Formula

T(1,1)=1, T(1,2)=2, T(1,3)=4, T(1,k)=T(1,k-1)+T(1,k-2)+T(1,k-3) for k>3. Row 1 is the tribonacci basis; write B(k)=T(1,k). Each row satisfies the recurrence T(n,k)=T(n,k-1)+T(n,k-2)+T(n,k-3). T(n,1) is least number not in an earlier row. If T(n,1) has tribonacci representation B(k(1))+B(k(2))+...+B(k(m)), then T(n,2) = B(k(2))+B(k(3))+...+B(k(m+1)) and T(n,3) = B(k(3))+B(k(4))+...+B(k(m+2)). (Continued shifting of indices gives the other terms in row n, also.)

Extensions

T(3, 4) corrected and more terms by John Keith, May 09 2022

A233554 Indices of primes in the tribonacci-like sequence, A020992.

Original entry on oeis.org

1, 3, 6, 15, 19, 22, 207, 542, 2374, 10579, 17726, 43182
Offset: 1

Views

Author

Robert Price, Dec 12 2013

Keywords

Comments

a(13) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,2,1};Print[1];For[n=3,n<=1000,n++,sum=Plus@@a;If[PrimeQ[sum],Print[n]];a=RotateLeft[a]; a[[3]]=sum]

A357643 Number of integer compositions of n into parts that are alternately equal and unequal.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 5, 5, 9, 7, 17, 14, 28, 25, 49, 42, 87, 75, 150, 132, 266, 226, 466, 399, 810, 704, 1421, 1223, 2488, 2143, 4352, 3759, 7621, 6564, 13339, 11495, 23339, 20135, 40852, 35215, 71512, 61639, 125148, 107912, 219040, 188839, 383391, 330515, 670998
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Examples

			The a(1) = 1 through a(8) = 9 compositions:
  (1)  (2)   (3)  (4)    (5)    (6)     (7)      (8)
       (11)       (22)   (113)  (33)    (115)    (44)
                  (112)  (221)  (114)   (223)    (116)
                                (1122)  (331)    (224)
                                (2211)  (11221)  (332)
                                                 (1133)
                                                 (3311)
                                                 (22112)
                                                 (112211)
		

Crossrefs

The even-length version is A003242, ranked by A351010, partitions A035457.
Without equal relations we have A016116, equal only A001590 (apparently).
The version for partitions is A351005.
The opposite version is A357644, partitions A351006.
A011782 counts compositions.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357645 counts compositions by half-alternating sum, skew A357646.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=(1+sum(k=1,N, (x^k)/(1+x^(2*k))))/(1-sum(k=1,N, (x^(2*k))/(1+x^(2*k))))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, May 28 2024

Formula

G.f.: (1 + Sum_{k>0} (x^k)/(1 + x^(2*k)))/(1 - Sum_{k>0} (x^(2*k))/(1 + x^(2*k))). - John Tyler Rascoe, May 28 2024

Extensions

More terms from Alois P. Heinz, Oct 12 2022

A357644 Number of integer compositions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 8, 13, 17, 25, 30, 44, 58, 77, 98, 142, 176, 245, 311, 426, 548, 758, 952, 1319, 1682, 2308, 2934, 4059, 5132, 7087, 9008, 12395, 15757, 21728, 27552, 38019, 48272, 66515, 84462, 116467, 147812, 203825, 258772, 356686, 452876, 624399, 792578
Offset: 0

Views

Author

Gus Wiseman, Oct 14 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 13 compositions:
  (1)  (2)  (3)   (4)    (5)    (6)     (7)
            (12)  (13)   (14)   (15)    (16)
            (21)  (31)   (23)   (24)    (25)
                  (211)  (32)   (42)    (34)
                         (41)   (51)    (43)
                         (122)  (411)   (52)
                         (311)  (1221)  (61)
                                (2112)  (133)
                                        (322)
                                        (511)
                                        (2113)
                                        (3112)
                                        (12211)
		

Crossrefs

Without equal relations we have A000213, equal only A027383.
Even-length opposite: A003242, ranked by A351010, partitions A035457.
The version for partitions is A351006.
The opposite version is A357643, partitions A351005.
A011782 counts compositions.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357645 counts compositions by half-alternating sum, skew A357646.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,10}]

Extensions

More terms from Alois P. Heinz, Oct 19 2022

A234696 Indices of primes in the tribonacci-like sequence, A214727.

Original entry on oeis.org

1, 2, 3, 8, 16, 20, 64, 208, 364, 2652, 7763, 17280, 24104, 31823, 70864, 74008
Offset: 1

Views

Author

Robert Price, Dec 29 2013

Keywords

Comments

a(17) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1, 2, 2}; Print[2]; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]
    Position[LinearRecurrence[{1,1,1},{1,2,2},75000],?PrimeQ]-1//Flatten (* _Harvey P. Dale, Sep 02 2016 *)

A113413 A Riordan array of coordination sequences.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 2, 8, 6, 1, 2, 12, 18, 8, 1, 2, 16, 38, 32, 10, 1, 2, 20, 66, 88, 50, 12, 1, 2, 24, 102, 192, 170, 72, 14, 1, 2, 28, 146, 360, 450, 292, 98, 16, 1, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1, 2, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 1, 2, 40, 326
Offset: 0

Views

Author

Paul Barry, Oct 29 2005

Keywords

Comments

Columns include A040000, A008574, A005899, A008412, A008413, A008414. Row sums are A078057(n)=A001333(n+1). Diagonal sums are A001590(n+3). Reverse of A035607. Signed version is A080246. Inverse is A080245.
For another version see A122542. - Philippe Deléham, Oct 15 2006
T(n,k) is the number of length n words on alphabet {0,1,2} with no two consecutive 1's and no two consecutive 2's and having exactly k 0's. - Geoffrey Critzer, Jun 11 2015
From Eric W. Weisstein, Feb 17 2016: (Start)
Triangle of coefficients (from low to high degree) of x^-n * vertex cover polynomial of the n-ladder graph P_2 \square p_n:
Psi_{L_1}: x*(2 + x) -> {2, 1}
Psi_{L_2}: x^2*(2 + 4 x + x^2) -> {2, 4, 1}
Psi_{L_3}: x^3*(2 + 8 x + 6 x^2 + x^3) -> {2, 8, 6, 1}
(End)
Let c(n, k), n > 0, be multiplicative sequences for some fixed integer k >= 0 with c(p^e, k) = T(e+k, k) for prime p and e >= 0. Then we have Dirichlet g.f.: Sum_{n>0} c(n, k) / n^s = zeta(s)^(2*k+2) / zeta(2*s)^(k+1). Examples: For k = 0 see A034444 and for k = 1 see A322328. Dirichlet convolution of c(n, k) and lambda(n) is Dirichlet inverse of c(n, k). - Werner Schulte, Oct 31 2022

Examples

			Triangle begins
  1;
  2,  1;
  2,  4,  1;
  2,  8,  6,  1;
  2, 12, 18,  8,  1;
  2, 16, 38, 32, 10,  1;
  2, 20, 66, 88, 50, 12,  1;
		

Crossrefs

Other versions: A035607, A119800, A122542, A266213.

Programs

  • Mathematica
    nn = 10; Map[Select[#, # > 0 &] &, CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, nn}], {x, y}]] // Grid (* Geoffrey Critzer, Jun 11 2015 *)
    CoefficientList[CoefficientList[Series[1/(1 - 2 x/(1 + x) - y x), {x, 0, 10}, {y, 0, 10}], x], y] (* Eric W. Weisstein, Feb 17 2016 *)
  • Sage
    T = lambda n,k : binomial(n, k)*hypergeometric([-k-1, k-n], [-n], -1).simplify_hypergeometric()
    A113413 = lambda n,k : 1 if n==0 and k==0 else T(n, k)
    for n in (0..12): print([A113413(n,k) for k in (0..n)]) # Peter Luschny, Sep 17 2014 and Mar 16 2016
    
  • Sage
    # Alternatively:
    def A113413_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (1..n)]
    for n in (1..10): print(A113413_row(n)) # Peter Luschny, Mar 16 2016

Formula

From Paul Barry, Nov 13 2005: (Start)
Riordan array ((1+x)/(1-x), x(1+x)/(1-x)).
T(n, k) = Sum_{i=0..n-k} C(k+1, i)*C(n-i, k).
T(n, k) = Sum_{j=0..n-k} C(k+j, j)*C(k+1, n-k-j).
T(n, k) = D(n, k) + D(n-1, k) where D(n, k) = Sum_{j=0..n-k} C(n-k, j)*C(k, j)*2^j = A008288(n, k).
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k-1).
T(n, k) = Sum_{j=0..n} C(floor((n+j)/2), k)*C(k, floor((n-j)/2)). (End)
T(n, k) = C(n, k)*hypergeometric([-k-1, k-n], [-n], -1). - Peter Luschny, Sep 17 2014
T(n, k) = (Sum_{i=2..k+2} A137513(k+2, i) * (n-k)^(i-2)) / (k!) for 0 <= k < n (conjectured). - Werner Schulte, Oct 31 2022

A235873 Primes in the tribonacci-like sequence, A141523.

Original entry on oeis.org

3, 5, 7, 13, 83, 281, 3217, 10883, 1425427, 55187617, 24453221203, 124001884480009, 29872617402415741, 185875267730565697, 341877918058715653, 44580781450601596678810171573, 36012536557658790037420884825332617431175065740791
Offset: 1

Views

Author

Robert Price, Jan 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a={3,1,1}; Print[3]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A249413 Primes in the hexanacci numbers sequence A000383.

Original entry on oeis.org

11, 41, 72426721, 143664401, 565262081, 4160105226881, 253399862985121, 997027328131841, 212479323351825962211841, 188939838859312612896128881921, 22828424707602602744356458636161, 661045104283639247572028952777478721
Offset: 1

Views

Author

Robert Price, Dec 03 2014

Keywords

Comments

a(13) is too large to display here. It has 62 digits and is the 210th term in A000383.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1}; For[n=6, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
Previous Showing 21-30 of 135 results. Next