cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 120 results. Next

A105758 Indices of prime hexanacci (or Fibonacci 6-step) numbers A001592 (using offset -4).

Original entry on oeis.org

3, 36, 37, 92, 660, 6091, 8415, 11467, 13686, 38831, 49828, 97148
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Comments

No other n < 30000.
This sequence uses the convention of the Noe and Post reference. Their indexing scheme differs by 4 from the indices in A001592. Sequence A249635 lists the indices of the same primes (A105759) using the indexing scheme as defined in A001592. - Robert Price, Nov 02 2014 [Edited by M. F. Hasler, Apr 22 2018]
a(13) > 3*10^5. - Robert Price, Nov 02 2014

Crossrefs

Cf. A105759 (prime Fibonacci 6-step numbers), A249635 (= a(n) + 4), A001592.
Cf. A000045, A000073, A000078 (and A001631), A001591, A122189 (or A066178), A079262, A104144, A122265, A168082, A168083 (Fibonacci, tribonacci, tetranacci numbers and other generalizations).
Cf. A005478, A092836, A104535, A105757, A105761, ... (primes in these sequence).
Cf. A001605, A303263, A303264 (and A104534 and A247027), A248757 (and A105756), ... (indices of primes in A000045, A000073, A000078, ...).

Programs

  • Mathematica
    a={1, 0, 0, 0, 0, 0}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, n]], {n, 30000}]; lst

Formula

a(n) = A249635(n) - 4. A105759(n) = A001592(A249635(n)) = A001592(a(n) + 4). - M. F. Hasler, Apr 22 2018

Extensions

a(10)-a(12) from Robert Price, Nov 02 2014
Edited by M. F. Hasler, Apr 22 2018

A117595 Numbers n such that F(2*n - 1) is prime, where F(m) is a Fibonacci number.

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 12, 15, 22, 24, 42, 66, 69, 180, 216, 217, 225, 255, 285, 286, 1486, 2362, 2694, 4656, 4839, 7216, 12781, 15379, 18000, 18756, 25417, 40920, 52456, 65011, 74046, 100554, 198690, 216891, 295021, 296845, 302356
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 05 2006

Keywords

Comments

See A001605, which is the main entry for Fibonacci primes, for the latest information. - N. J. A. Sloane, Jul 09 2016
Or, A001519(n) is prime. - Zak Seidov, Jul 04 2016

Examples

			If n=69 then F(2*n - 1) is a prime with 29 digits.
		

Crossrefs

Cf. A000045, A001605 (Fibonacci(n) is prime), A001519.

Programs

  • Mathematica
    Select[Range[2500], PrimeQ[Fibonacci[2# - 1]] &] (* Stefan Steinerberger, Apr 06 2006 *)
  • PARI
    { for(n=1,10000, if ( isprime( fibonacci(2*n-1) ), print1(n,","); ); ); } \\ R. J. Mathar, Apr 07 2006

Formula

2*a(n)-1 = A001605(n+1) for all odd A001605(n+1). - R. J. Mathar, Apr 07 2006

Extensions

More terms from Stefan Steinerberger, T. D. Noe and R. J. Mathar, Apr 07 2006

A135968 Sum of the distinct prime factors of the Fibonacci number A050937(n).

Original entry on oeis.org

0, 150, 2974, 2443, 62158, 55946694, 2710261050, 555008010, 1547031, 46165377746, 95396546, 92180471494910, 1665088321801550, 364125780, 771601497990, 518283023, 8242065051309594, 32530503217194, 272602401466814027806, 5568053048227732238014, 85526725052226871
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Examples

			a(2) = 150 = 37+113 because A050937(2) = 4181 = 37*113.
a(3) = 2974 = 557 + 2417 because A050937(3) = 1346269 = 557*2417.
		

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[Fibonacci[Prime[n]]], b = FactorInteger[Fibonacci[Prime[n]]]; c =Length[FactorInteger[b]]; d = 0; Do[d = d + b[[r]][[1]], {r, 1, c}]; AppendTo[k, d]], {n, 1, 50}]; k

Formula

a(n) = A008472(A050937(n)). - R. J. Mathar, Dec 12 2007

Extensions

Edited by R. J. Mathar, Dec 12 2007
a(19)-a(21) from Amiram Eldar, Oct 13 2024

A140987 Number of groups of order F(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 2, 2, 2, 1, 197, 1, 1, 6, 2, 1, 41, 1, 7, 4, 1, 1
Offset: 1

Views

Author

Jonathan Vos Post, Jul 28 2008

Keywords

Examples

			a(6) = 5 because Fibonacci number F(6) = 8 and there are 5 groups of order 8.
		

Crossrefs

Formula

a(n) = A000001(A000045(n)).

Extensions

Entries through a(17) checked by N. J. A. Sloane, Aug 01 2008
a(18)-a(23) from Eric M. Schmidt, Jun 19 2014

A153889 Middle of five consecutive Fibonacci numbers such that sum of five consecutive Fibonacci numbers is prime number.

Original entry on oeis.org

1, 3, 5, 21, 233, 377, 6765, 317811, 514229, 2178309, 53316291173, 10610209857723, 23416728348467685, 259695496911122585, 7540113804746346429, 36726740705505779255899443, 251728825683549488150424261, 37281903592600898879479448409585328515842582885579275203077366912825
Offset: 1

Views

Author

Keywords

Comments

0+1+1+2=3=7, 1+2+3+5+8=19, 2+3+5+8=13=31, 8+13+21+34+55=131, 89+144+233+377+610=1453, 144+233+377+610+987=2351,...

Crossrefs

Programs

  • Mathematica
    a=0;b=1;c=1;d=2;lst={};Do[e=Fibonacci[n];p=a+b+c+d+e;If[PrimeQ[p],AppendTo[lst,c]];a=b;b=c;c=d;d=e,{n,4,6!}];lst

A153890 Second-to-largest of five consecutive Fibonacci numbers such that sum of five consecutive Fibonacci numbers is prime number.

Original entry on oeis.org

2, 5, 8, 34, 377, 610, 10946, 514229, 832040, 3524578, 86267571272, 17167680177565, 37889062373143906, 420196140727489673, 12200160415121876738, 59425114757512643212875125
Offset: 1

Views

Author

Keywords

Comments

0+1+1+2=3=7, 1+2+3+5+8=19, 2+3+5+8=13=31, 8+13+21+34+55=131, 89+144+233+377+610=1453, 144+233+377+610+987=2351,...

Crossrefs

Programs

  • Mathematica
    a=0;b=1;c=1;d=2;lst={};Do[e=Fibonacci[n];p=a+b+c+d+e;If[PrimeQ[p],AppendTo[lst,d]];a=b;b=c;c=d;d=e,{n,4,6!}];lst

A153892 Primes that are the sum of five consecutive Fibonacci numbers.

Original entry on oeis.org

7, 19, 31, 131, 1453, 2351, 42187, 1981891, 3206767, 13584083, 332484016063, 66165989928299, 146028309791690867, 1619478772188347101, 47020662244482792763, 229030451631542624193448579, 1569798068858809572115420691
Offset: 1

Views

Author

Keywords

Comments

Primes of the form F(k+3)+L(k+2), where F(k) and L(k) are the k-th Fibonacci number and Lucas number, respectively. This formula also gives that 3,2 and 5 are primes of the form F(k+3)+L(k+2), with k=-2, k=-1, k=0, respectively. - Rigoberto Florez, Jul 31 2022
Are there infinitely many primes of the form F(k+3)+L(k+2)? There are 47 primes of this form for k <= 80000. There are no such primes for 64000 <= k <= 80000. - Rigoberto Florez, Feb 26 2023
a(29) has 948 digits; a(30) has 1253 digits. - Harvey P. Dale, Jan 13 2013

Examples

			a(1) =  7 = 0+1+1+2+3 is prime;
a(2) = 19 = 1+2+3+5+8 is prime;
a(3) = 31 = 2+3+5+8+13 is prime, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Total/@Partition[Fibonacci[Range[0,150]],5,1],PrimeQ] (* Harvey P. Dale, Jan 13 2013 *)

A159977 a(n) = (smallest prime >= Fibonacci(n)) - Fibonacci(n).

Original entry on oeis.org

1, 1, 0, 0, 0, 3, 0, 2, 3, 4, 0, 5, 0, 2, 3, 4, 0, 7, 20, 14, 3, 2, 0, 13, 4, 10, 11, 16, 0, 23, 4, 4, 25, 10, 14, 35, 6, 24, 3, 2, 6, 7, 0, 20, 9, 48, 0, 5, 28, 18, 23, 14, 14, 11, 16, 10, 21, 4, 62, 13, 38, 12, 7, 16, 12, 19, 36, 28, 143, 32, 58, 29, 96, 100, 33, 2, 30, 27, 12, 62, 25, 46, 0
Offset: 1

Views

Author

Enoch Haga, Apr 28 2009

Keywords

Examples

			a(1) = a(2) = 1 because Fibonacci(1) = Fibonacci(2) = 1, the smallest prime >= 1 is 2, and 2 - 1 = 1.
a(3) = a(4) = a(5) = 0 because Fibonacci(3)=2, Fibonacci(4)=3, and Fibonacci(5)=5 are all prime.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> nextprime(f-1)-f)(combinat[fibonacci](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 04 2018
  • Mathematica
    Table[If[PrimeQ[n],0,NextPrime[n]-n],{n,Fibonacci[Range[90]]}] (* Harvey P. Dale, Jul 22 2016 *)
  • PARI
    F=1;G=0;for(i=1,100,print1(nextprime(F)-F,",");T=F;F+=G;G=T) \\ Hagen von Eitzen, Jul 20 2009
  • UBASIC
    10 'FiboA 20 A=1:print A; 30 B=1:print B; 40 C=A+B:print C;:T=T+1 41 if C<>prmdiv(C) then print "<";nxtprm(C)-C;">":else print "<";0;">"; 50 D=B+C:print D; 51 if D<>prmdiv(D) then print "<";nxtprm(D)-D;">":else print "<";0;">"; 60 A=C:B=D:if T>22 then stop:else 40
    

Formula

a(n) = (smallest prime >= Fibonacci(n)) - Fibonacci(n).
a(n) = 0 <=> n in { A001605 }. - Alois P. Heinz, Feb 04 2018

Extensions

More terms (cf. b-file) from Hagen von Eitzen, Jul 20 2009
Edited by Jon E. Schoenfield, Feb 04 2018

A177461 The smallest k such that Fibonacci(n)+k and Fibonacci(n)-k are both prime.

Original entry on oeis.org

0, 0, 0, 3, 0, 2, 3, 12, 0, 5, 0, 24, 3, 4, 0, 33, 48, 28, 57, 192, 0, 31, 12, 60, 81, 28, 0, 177, 108, 50, 345, 150, 168, 35, 6, 618, 735, 76, 18, 147, 0, 134, 111, 126, 0, 85, 642, 1146, 225, 92, 480, 219, 348, 466, 345, 72, 300, 89, 90, 312, 2025, 664, 168, 945, 276, 128
Offset: 3

Views

Author

Keywords

Comments

Indices where a(n)= 0 are provided by A001605.

Examples

			3 +- 0 -> primes, 5 +- 0 -> primes, 8 +- 3 -> primes, 13 +- 0 -> primes, 21 +- 2 -> primes, ...
		

Crossrefs

Programs

  • Maple
    A047160 := proc(n) for k from 0 to n-1 do if isprime(n-k) and isprime(n+k) then return k; end if; end do: return -1 ; end proc:
    A177461 := proc(n) A047160(combinat[fibonacci](n)) ; end proc: # R. J. Mathar, Jan 23 2011
  • Mathematica
    f[n_] := Block[{k}, If[n==2||OddQ[n], k=0, k=1]; While[!PrimeQ[n-k] || !PrimeQ[n+k], k+=2]; k]; Table[f[Fibonacci[n]], {n,3,100}]

Formula

a(n) = A047160(A000045(n)). - R. J. Mathar, Jan 23 2011

A263880 Safe primes 2p + 1 such that p is a Fibonacci prime.

Original entry on oeis.org

5, 7, 11, 179, 467, 21195998530602981465199287343010006825031720870818843865120019360285948694390966280586508792391539752259819
Offset: 1

Views

Author

Jonathan Sondow, Nov 02 2015

Keywords

Comments

Same as safe primes q whose Sophie Germain prime (2q - 1)/2 is a Fibonacci number.
No other terms up to 2*Fibonacci(2904353) + 1, according to the list of indices of 49 Fibonacci (probable) primes in A001605.
In that range, the only safe Fibonacci prime is 5. Are there larger ones?
There are six primes 2p + 1 such that p is a Fibonacci prime, namely, a(1) through a(6). By contrast, in the same range there are only two primes 2p - 1 such that p is a Fibonacci prime, namely, 2p - 1 = 3 and 5, for p = 2 and 3. Is there some modular restriction to explain this bias in favor of 2p + 1 over 2p - 1 among Fibonacci primes p?

Examples

			179 is in the sequence because it is prime and (179 - 1)/2 = 89 = Fibonacci(11), which is also prime.
		

Crossrefs

Programs

  • Mathematica
    2 * Select[Fibonacci[Range[2000]], And @@ PrimeQ[{#, 2 # + 1}] &] + 1

Formula

a(n) = 2*A155011(n) + 1.
Previous Showing 51-60 of 120 results. Next