cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 85 results. Next

A093305 Number of binary necklaces of length n with no subsequence 000.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 11, 19, 29, 48, 75, 132, 213, 369, 627, 1083, 1857, 3244, 5619, 9844, 17205, 30229, 53115, 93701, 165313, 292464, 517831, 918578, 1630933, 2900109, 5161443, 9197251, 16402841, 29283026, 52319379, 93558968, 167427845, 299846737, 537358107, 963651447, 1729192433
Offset: 1

Views

Author

Philippe Deléham, Apr 24 2004

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.

Crossrefs

Programs

  • Mathematica
    Table[1/n * Sum[EulerPhi[n/d] (d Sum[Sum[Binomial[j, d - 3 k + 2 j] Binomial[k, j], {j, d - 3 k, k}]/k, {k, d}]), {d, Divisors@ n}], {n, 41}] (* Michael De Vlieger, Dec 28 2016, after Vladimir Joseph Stephan Orlovsky at A001644 *)
  • PARI
    N=66;  x='x+O('x^N);
    B(x)=x*(1+x+x^2);
    A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))));
    Vec(A)
    /* Joerg Arndt, Aug 06 2012 */

Formula

a(n) = (1/n) * Sum_{d divides n} totient(n/d)*A001644(d).
G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x*(1+x+x^2). - Joerg Arndt, Aug 06 2012
a(n) ~ d^n / n, where d = (19 + 3*sqrt(33))^(1/3)/3 + 4/(3*(19 + 3*sqrt(33))^(1/3)) + 1/3 = A058265 = 1.8392867552141611325518... - Vaclav Kotesovec, Jul 13 2019

A106282 Primes p such that the polynomial x^3-x^2-x-1 mod p has no zeros; i.e., the polynomial is irreducible over the integers mod p.

Original entry on oeis.org

3, 5, 23, 31, 37, 59, 67, 71, 89, 97, 113, 137, 157, 179, 181, 191, 223, 229, 251, 313, 317, 331, 353, 367, 379, 383, 389, 433, 443, 449, 463, 467, 487, 509, 521, 577, 619, 631, 641, 643, 647, 653, 661, 691, 709, 719, 727, 751, 797, 823, 829, 839, 859, 881
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step sequences, A000073 and A001644.
Primes of the form 3x^2+2xy+4y^2 with x and y in Z. - T. D. Noe, May 08 2005

Crossrefs

Primes in A028952.
Cf. A106276 (number of distinct zeros of x^3-x^2-x-1 mod prime(n)), A106294, A106302 (period of Lucas and Fibonacci 3-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • PARI
    forprime(p=2,1000,if(#polrootsmod(x^3-x^2-x-1,p)==0,print1(p,", ")));
    /* Joerg Arndt, Jul 19 2012 */

A125127 Array L(k,n) read by antidiagonals: k-step Lucas numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 3, 7, 7, 1, 1, 3, 7, 11, 11, 1, 1, 3, 7, 15, 21, 18, 1, 1, 3, 7, 15, 26, 39, 29, 1, 1, 3, 7, 15, 31, 51, 71, 47, 1, 1, 3, 7, 15, 31, 57, 99, 131, 76, 1, 1, 3, 7, 15, 31, 63, 113, 191, 241, 123, 1
Offset: 1

Views

Author

Jonathan Vos Post, Nov 21 2006

Keywords

Examples

			Table begins:
1 | 1  1  1   1   1   1    1    1    1    1
2 | 1  3  4   7  11  18   29   47   76  123
3 | 1  3  7  11  21  39   71  131  241  443
4 | 1  3  7  15  26  51   99  191  367  708
5 | 1  3  7  15  31  57  113  223  439  863
6 | 1  3  7  15  31  63  120  239  475  943
7 | 1  3  7  15  31  63  127  247  493  983
8 | 1  3  7  15  31  63  127  255  502 1003
9 | 1  3  7  15  31  63  127  255  511 1013
		

Crossrefs

n-step Lucas number analog of A092921 Array F(k, n) read by antidiagonals: k-generalized Fibonacci numbers (and see related A048887, A048888). L(1, n) = "1-step Lucas numbers" = A000012. L(2, n) = 2-step Lucas numbers = A000204. L(3, n) = 3-step Lucas numbers = A001644. L(4, n) = 4-step Lucas numbers = A001648 Tetranacci numbers A073817 without the leading term 4. L(5, n) = 5-step Lucas numbers = A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15. L(6, n) = 6-step Lucas numbers = A074584 Esanacci ("6-anacci") numbers. L(7, n) = 7-step Lucas numbers = A104621 Heptanacci-Lucas numbers. L(8, n) = 8-step Lucas numbers = A105754. L(9, n) = 9-step Lucas numbers = A105755. See A000295, A125129 for comments on partial sums of diagonals.

Programs

  • Sage
    def L(k, n):
        if n < 0:
            return -1
        a = [-1]*(k-1) + [k] # [-1, -1, ..., -1, k]
        for i in range(1, n+1):
            a[:] = a[1:] + [sum(a)]
        return a[-1]
    [L(k, n) for d in (1..12) for k, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 10 2019

Formula

L(k,n) = L(k,n-1) + L(k,n-2) + ... + L(k,n-k); L(k,n) = -1 for n < 0, and L(k,0) = k.
G.f. for row k: x*(dB(k,x)/dx)/(1-B(k,x)), where B(k,x) = x + x^2 + ... + x^k. - Petros Hadjicostas, Jan 24 2019

Extensions

Corrected by Freddy Barrera, Jan 10 2019

A106279 Primes p such that the polynomial x^3-x^2-x-1 mod p has 3 distinct zeros.

Original entry on oeis.org

47, 53, 103, 163, 199, 257, 269, 311, 397, 401, 419, 421, 499, 587, 599, 617, 683, 757, 773, 863, 883, 907, 911, 929, 991, 1021, 1087, 1109, 1123, 1181, 1237, 1291, 1307, 1367, 1433, 1439, 1543, 1567, 1571, 1609, 1621, 1697, 1699, 1753, 1873, 1907, 2003
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step sequences, A000073 and A001644. The periods of the sequences A000073(k) mod p and A001644(k) mod p have length less than p. For a given p, let the zeros be a, b and c. Then A001644(k) mod p = (a^k+b^k+c^k) mod p. This sequence is the same as A033209 except for the initial term.

Crossrefs

Cf. A106276 (number of distinct zeros of x^3-x^2-x-1 mod prime(n)), A106294, A106302 (periods of the Fibonacci and Lucas 3-step sequences mod prime(n)).

Programs

  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 500}];Prime[Flatten[Position[t, 3]]]

A104622 Indices of prime values of heptanacci-Lucas numbers A104621.

Original entry on oeis.org

0, 2, 3, 5, 7, 10, 17, 24, 25, 26, 28, 38, 40, 49, 62, 79, 89, 114, 140, 145, 182, 248, 353, 437, 654, 702, 784, 921, 931, 986, 1206, 2136, 2137, 3351, 5411, 13264, 13757, 16348, 27087, 27160
Offset: 1

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

The 7th-order linear recurrence A104622 (heptanacci-Lucas numbers) is a generalization of the Lucas sequence A000032. T. D. Noe and I have noted that the heptanacci-Lucas numbers have many more primes than the corresponding heptanacci (see A104414) which he found has only the first 3 primes that I identified through the first 5000 values, whereas these heptanacci-Lucas numbers have 17 primes among the first 100 values. For semiprimes in heptanacci-Lucas numbers, see A104623.

Examples

			A104621(0) = 7,
A104621(2) = 3,
A104621(3) = 7,
A104621(5) = 31,
A104621(7) = 127,
A104621(10) = 983,
A104621(17) = 122401,
A104621(24) = 15231991.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 7; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[5] = 31; a[6] = 63; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + a[n - 5] + a[n - 6] + a[n - 7]; Do[ If[ PrimeQ[ a[n]], Print[n]], {n, 5000}] (* Robert G. Wilson v, Mar 17 2005 *)
    Flatten[Position[LinearRecurrence[{1,1,1,1,1,1,1},{7,1,3,7,15,31,63},28000],?PrimeQ]]-1 (* _Harvey P. Dale, Jan 02 2016 *)

Formula

Prime values of the heptanacci-Lucas numbers, which are defined by: a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63, for n > 6: a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7).

Extensions

More terms from T. D. Noe and Robert G. Wilson v, Mar 17 2005

A106276 Number of distinct zeros of x^3-x^2-x-1 mod prime(n).

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 1, 1, 3, 3, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 3, 1, 1, 0, 0, 0, 1, 1, 3, 1, 0, 1, 0, 1, 1, 1, 0, 3, 1, 3, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 3, 3, 1, 3, 3, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step recursions, A000073 and A001644. Similar polynomials are treated in Serre's paper. The discriminant of the polynomial is -44 = -4*11. The primes p yielding 3 distinct zeros, A106279, correspond to the periods of the sequences A000073(k) mod p and A001644(k) mod p having length less than p. The Lucas 3-step sequence mod p has two additional primes p for which the period is less than p: 2 and 11, which are factors of the discriminant -44. For p=11, the Fibonacci 3-step sequence mod p has a period of p(p-1).

Crossrefs

Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106293 (period of the Lucas 3-step sequences mod prime(n)), A106282 (prime moduli for which the polynomial is irreducible).

Programs

  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 150}]

A214826 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 4.

Original entry on oeis.org

1, 4, 4, 9, 17, 30, 56, 103, 189, 348, 640, 1177, 2165, 3982, 7324, 13471, 24777, 45572, 83820, 154169, 283561, 521550, 959280, 1764391, 3245221, 5968892, 10978504, 20192617, 37140013, 68311134, 125643764, 231094911, 425049809
Offset: 0

Views

Author

Abel Amene, Jul 29 2012

Keywords

Comments

See Comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,4,4];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+3*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,4,4},33] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+3*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((1+3*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (1+3*x-x^2)/(1-x-x^2-x^3).
a(n) = K(n) - 2*T(n+1) + 5*T(n), where K(n) = A001644(n) and T(n) = A000073(n+1). - G. C. Greubel, Apr 23 2019

A306357 Number of nonempty subsets of {1, ..., n} containing no three cyclically successive elements.

Original entry on oeis.org

0, 1, 3, 6, 10, 20, 38, 70, 130, 240, 442, 814, 1498, 2756, 5070, 9326, 17154, 31552, 58034, 106742, 196330, 361108, 664182, 1221622, 2246914, 4132720, 7601258, 13980894, 25714874, 47297028, 86992798, 160004702, 294294530, 541292032, 995591266, 1831177830
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Comments

Cyclically successive means 1 is a successor of n.
Set partitions using these subsets are counted by A323949.

Examples

			The a(1) = 1 through a(5) = 20 stable subsets:
  {1}  {1}    {1}    {1}    {1}
       {2}    {2}    {2}    {2}
       {1,2}  {3}    {3}    {3}
              {1,2}  {4}    {4}
              {1,3}  {1,2}  {5}
              {2,3}  {1,3}  {1,2}
                     {1,4}  {1,3}
                     {2,3}  {1,4}
                     {2,4}  {1,5}
                     {3,4}  {2,3}
                            {2,4}
                            {2,5}
                            {3,4}
                            {3,5}
                            {4,5}
                            {1,2,4}
                            {1,3,4}
                            {1,3,5}
                            {2,3,5}
                            {2,4,5}
		

Crossrefs

Programs

  • Mathematica
    stabsubs[g_]:=Select[Rest[Subsets[Union@@g]],Select[g,Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&];
    Table[Length[stabsubs[Partition[Range[n],3,1,1]]],{n,15}]

Formula

For n >= 3 we have a(n) = A001644(n) - 1.
From Chai Wah Wu, Jan 06 2020: (Start)
a(n) = 2*a(n-1) - a(n-4) for n > 6.
G.f.: x*(x^5 + x^4 - 2*x^3 + x + 1)/(x^4 - 2*x + 1). (End)

A324015 Number of nonempty subsets of {1, ..., n} containing no two cyclically successive elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, 9348, 15126, 24475, 39602, 64078, 103681, 167760, 271442, 439203, 710646, 1149850, 1860497, 3010348, 4870846, 7881195, 12752042, 20633238, 33385281, 54018520, 87403802
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2019

Keywords

Comments

Cyclically successive means 1 succeeds n.
After a(1) = 1, same as A001610 shifted once to the right. Also, a(n) = A169985(n) - 1.

Examples

			The a(6) = 17 stable subsets:
  {1}, {2}, {3}, {4}, {5}, {6},
  {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {2,6}, {3,5}, {3,6}, {4,6},
  {1,3,5}, {2,4,6}.
		

Crossrefs

Programs

  • Mathematica
    stabsubs[g_]:=Select[Rest[Subsets[Union@@g]],Select[g,Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&];
    Table[Length[stabsubs[Partition[Range[n],2,1,1]]],{n,0,10}]

Formula

For n <= 3, a(n) = n. Otherwise, a(n) = a(n - 1) + a(n - 2) + 1.

A004306 Rook polynomials.

Original entry on oeis.org

1, 1, 2, 6, 24, 44, 80, 144, 264, 484, 888, 1632, 3000, 5516, 10144, 18656, 34312, 63108, 116072, 213488, 392664, 722220, 1328368, 2443248, 4493832, 8265444, 15202520, 27961792, 51429752, 94594060, 173985600, 320009408, 588589064, 1082584068, 1991182536
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of perfect matchings in the circulant graph with 2*n vertices with jumps 1 and 3. - Robert Israel, Jan 24 2019

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000803. 4th column of A008305.
Equals 2 * (A001644(n) + 1), n>3.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+ 2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4) )); // G. C. Greubel, Apr 22 2019
    
  • Mathematica
    Join[{1,1,2,6},LinearRecurrence[{2,0,0,-1},{24,44,80,144},40]] (* or *) CoefficientList[ Series[ (1-x+2x^3+13x^4- 3x^5- 6x^6- 10x^7)/ (1-2x+ x^4),{x,0,40}],x] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1 -2*x+x^4)) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

G.f.: (1 - x + 2*x^3 + 13*x^4 - 3*x^5 - 6*x^6 - 10*x^7)/(1 - 2*x + x^4).
a(n) = 2*a(n-1) - a(n-4); a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(4)=24, a(5)=44, a(6)=80, a(7)=144. - Harvey P. Dale, Dec 13 2011
Previous Showing 41-50 of 85 results. Next