cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A111246 Triangle read by rows: a(n,k) = number of partitions of an n-set into exactly k nonempty subsets, each of size <= 3.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 0, 7, 6, 1, 0, 10, 25, 10, 1, 0, 10, 75, 65, 15, 1, 0, 0, 175, 315, 140, 21, 1, 0, 0, 280, 1225, 980, 266, 28, 1, 0, 0, 280, 3780, 5565, 2520, 462, 36, 1, 0, 0, 0, 9100, 26145, 19425, 5670, 750, 45, 1, 0, 0, 0, 15400, 102025, 125895, 56595, 11550, 1155
Offset: 1

Views

Author

Ji Young Choi, Oct 31 2005

Keywords

Comments

a(n,k) = 0 if k > n; a(n,k) = 0 if n > 0 and k < 0; a(n,k) can be extended to negative n and k, just as the Stirling numbers or Pascal's triangle can be extended. The present triangle is called the tri-restricted Stirling numbers of the second kind.
Also the Bell transform of the sequence "a(n) = 1 if n<3 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			a(1,1)=1;
a(2,1)=1; a(2,2)=1;
a(3,1)=1; a(3,2)=3; a(3,3)=1;
a(4,1)=0; a(4,2)=7; a(4,3)=6; a(4,4)=1;
a(5,1)=0; a(5,2)=10; a(5,3)=25; a(5,4)=10; a(5,5)=1;
a(6,1)=0; a(6,2)=10; a(6,3)=75; a(6,4)=65; a(6,5)=15; a(6,6)=1; ...
		

References

  • J. Y. Choi and J. D. H. Smith, On the combinatorics of multi-restricted numbers, Ars. Com., 75(2005), pp. 44-63.

Crossrefs

A144385 and A144402 are other versions of this same triangle.
Cf. A001680, A008277 (Stirling numbers).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0.
    BellMatrix(n -> `if`(n<3,1,0), 10); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# < 3, 1, 0]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • PARI
    row(n) = {x='x+O('x^(n+1)); polcoeff(serlaplace(exp(y*(x+x^2/2+x^3/6))), n, 'x); }
    tabl(nn) = for(n=1, nn, print(Vecrev(row(n)/y))) \\ Jinyuan Wang, Dec 21 2019

Formula

a(n, k) = a(n-1, k-1) + k*a(n-1, k) - binomial(n-1, 3)*a(n-4, k-1).
G.f. = Sum_{k_1+k_2+k_3=k, k_1+ 2k_2+3k_3=n} frac{n!}{(1!)^{k_1}(2!)^{k_2}(3!)^{k_3}k_1!k_2!k_3!}.
E.g.f.: exp(y*(x+x^2/2+x^3/6)). - Vladeta Jovovic, Nov 01 2005

Extensions

More terms from Vladeta Jovovic, Nov 01 2005
Recurrence, offset and example corrected by David Applegate, Jan 16 2009

A148092 The partition function G(n,6).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4131, 21065, 115274, 672673, 4163743, 27216840, 187160429, 1349511178, 10173555345, 79982663997, 654277037674, 5557624876513, 48931106059451, 445790174654588, 4196351007814659, 40757862664061104, 407944375184911787
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Comments

Set partitions into sets of size at most 6. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [Joerg Arndt, Dec 07 2012]

Crossrefs

The sequences G(n,1), G(n,2), G(n,3), G(n,4), G(n,5), G(n,6) are given by A000012, A000085, A001680, A001681, A110038, A148092 respectively.
Column k=6 of A229223.
Cf. A276926.

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    a:= n-> G(n, 6):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 20 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [1, 1, 2, 5, 15, 52][n+1],
          a(n-1)+(n-1)*(a(n-2) +(n-2)/2*(a(n-3) +(n-3)/3*(a(n-4)
                +(n-4)/4*(a(n-5) +(n-5)/5*a(n-6))))))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2013
  • Mathematica
    G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1] *n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; a[n_] := G[n, 6]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

E.g.f.: exp( x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + x^6/720 ).
a(n) = G(n,6) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - Alois P. Heinz, Apr 20 2012

A323951 Number of ways to split an n-cycle into connected subgraphs, all having at least three vertices.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 4, 8, 13, 22, 36, 56, 86, 131, 197, 294, 437, 647, 955, 1407, 2070, 3042, 4467, 6556, 9618, 14106, 20684, 30325, 44455, 65164, 95515, 139997, 205189, 300733, 440760, 645980, 946745, 1387538, 2033552, 2980332, 4367906, 6401495, 9381865, 13749810
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Examples

			The a(3) = 1 through a(7) = 8 partitions:
  {{123}}  {{1234}}  {{12345}}  {{123456}}    {{1234567}}
                                {{123}{456}}  {{123}{4567}}
                                {{126}{345}}  {{1234}{567}}
                                {{156}{234}}  {{1237}{456}}
                                              {{1267}{345}}
                                              {{127}{3456}}
                                              {{1567}{234}}
                                              {{167}{2345}}
		

Crossrefs

Programs

  • Mathematica
    cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[cycedsprop[n,2],Range[n]]],{n,15}]

Formula

G.f.: (x^7-2*x^6+x^3-3*x^2+3*x-1)/((x^3+x-1)*(x-1)^2). - Alois P. Heinz, Feb 10 2019

Extensions

More terms from Alois P. Heinz, Feb 10 2019

A323953 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into singletons and connected subsequences of sizes > k.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 12, 6, 2, 1, 27, 12, 7, 2, 1, 58, 23, 14, 8, 2, 1, 121, 44, 23, 16, 9, 2, 1, 248, 82, 38, 26, 18, 10, 2, 1, 503, 149, 65, 38, 29, 20, 11, 2, 1, 1014, 267, 112, 57, 42, 32, 22, 12, 2, 1, 2037, 475, 189, 90, 57, 46, 35, 24, 13, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Examples

			Triangle begins:
     1
     2    1
     5    2    1
    12    6    2    1
    27   12    7    2    1
    58   23   14    8    2    1
   121   44   23   16    9    2    1
   248   82   38   26   18   10    2    1
   503  149   65   38   29   20   11    2    1
  1014  267  112   57   42   32   22   12    2    1
  2037  475  189   90   57   46   35   24   13    2    1
  4084  841  312  146   80   62   50   38   26   14    2    1
Row 4 counts the following connected partitions:
  {{1234}}        {{1234}}        {{1234}}        {{1}{2}{3}{4}}
  {{1}{234}}      {{1}{234}}      {{1}{2}{3}{4}}
  {{12}{34}}      {{123}{4}}
  {{123}{4}}      {{124}{3}}
  {{124}{3}}      {{134}{2}}
  {{134}{2}}      {{1}{2}{3}{4}}
  {{14}{23}}
  {{1}{2}{34}}
  {{1}{23}{4}}
  {{12}{3}{4}}
  {{14}{2}{3}}
  {{1}{2}{3}{4}}
		

Crossrefs

First column is A000325. Second column is A323950.

Programs

  • Mathematica
    cyceds[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,Prepend[Range[i+k,n+i-1],i]}]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[cyceds[n,k],Range[n]]],{n,10},{k,n}]
  • PARI
    T(n,k) = {1 + if(kAndrew Howroyd, Jan 19 2023

Formula

T(n,k) = 2 - n + Sum_{i=1..floor(n/k)} n*binomial(n-i*k+i-1, 2*i-1)/i for 1 <= k < n. - Andrew Howroyd, Jan 19 2023

A188449 T(n,k)=Number of (n*k)Xk binary arrays with nonzero rows in decreasing order, no more than 3 ones in any row and exactly n ones in every column.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 14, 8, 0, 0, 46, 66, 5, 0, 0, 166, 722, 139, 1, 0, 0, 652, 9955, 4944, 139, 0, 0, 0, 2780, 165252, 244490, 16683, 66, 0, 0, 0, 12644, 3221806, 15980350, 2876300, 30090, 14, 0, 0, 0, 61136, 72445292, 1330789145, 703845255, 18014566, 30090, 1, 0, 0
Offset: 1

Views

Author

R. H. Hardin Mar 31 2011

Keywords

Comments

Table starts
.1.2.5..14....46.......166..........652...........2780...........12644
.0.1.8..66...722......9955.......165252........3221806........72445292
.0.0.5.139..4944....244490.....15980350.....1330789145....137418347276
.0.0.1.139.16683...2876300....703845255...235994839738.105035943170557
.0.0.0..66.30090..18014566..15978843654.20633840650794
.0.0.0..14.30090..64224371.203200240829
.0.0.0...1.16683.135725210
.0.0.0...0..4944
.0.0.0...0
.0.0.0

Examples

			All solutions for 9X3
..1..1..0....1..1..1....1..1..1....1..1..1....1..1..1
..1..0..1....1..1..0....1..1..0....1..0..1....1..1..0
..1..0..0....1..0..1....1..0..0....1..0..0....1..0..1
..0..1..1....0..1..1....0..1..1....0..1..1....0..1..0
..0..1..0....0..0..0....0..0..1....0..1..0....0..0..1
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
		

Crossrefs

Row 1 is A001680

A229414 Number of set partitions of {1,...,3n} into sets of size at most 3.

Original entry on oeis.org

1, 5, 166, 12644, 1680592, 341185496, 97620050080, 37286121988256, 18280749571449664, 11168256342434121152, 8306264068494786829696, 7380771881944947770497280, 7715405978050522488223499776, 9365880670184268387214967727104, 13058232187415887547449498864463872
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2013

Keywords

Crossrefs

Row n=3 of A229243.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 5, 166][n+1],
          ((108*n^2-72*n+4)*a(n-1)-6*(n-1)*(3*n-5)*(27*n^2-48*n+10)*a(n-2)
           +9*(n-1)*(n-2)*(3*n-1)*(3*n-7)*(3*n-5)*(3*n-8)*a(n-3))/8)
        end:
    seq(a(n), n=0..20);
  • Mathematica
    G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n - k, k]; For[j = k - 1, j >= 1, j--, g = g(n-j)/j + G[n - j, k]]; g]];
    a[n_] := G[3n, 3];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz in A229243 *)

Formula

a(n) = (3n)! * [x^(3n)] exp(x + x^2/2 + x^3/6).
a(n) = A001680(3n) = A229223(3n,3).

A014775 Expansion of exp ( - x - (1/2)*x^2 - (1/6)*x^3).

Original entry on oeis.org

1, -1, 0, 1, 2, -6, -14, 20, 204, 28, -2584, -6876, 33760, 219296, -121848, -6020456, -15177904, 126126960, 950679424, -898745392, -38731873824, -123922308896, 1126028191520, 10547325457536, -5093629711808
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 30}, CoefficientList[Series[Exp[-x - x^2/2 - x^3/6], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 09 2020 *)

A108947 Triangle: T(n,k) is the partition function G(n-k,k).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 2, 1, 1, 0, 1, 10, 5, 2, 1, 1, 0, 1, 26, 14, 5, 2, 1, 1, 0, 1, 76, 46, 15, 5, 2, 1, 1, 0, 1, 232, 166, 51, 15, 5, 2, 1, 1, 0, 1, 764, 652, 196, 52, 15, 5, 2, 1, 1, 0, 1, 2620, 2780, 827, 202, 52, 15, 5, 2, 1, 1
Offset: 0

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

See entries for A001680 and A001681 for appropriate references.

Crossrefs

Cf. A000110. First differences of a sequence G(k, 0), G(k, 1), ... give a row of A080510 (e.g., 0, 1, 10, 14, 15, 15, ... gives 1, 9, 4, 1).

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(G(n-i*j, i-1)*n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    T:= (n, k)-> G(n-k, k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 15 2013
  • Mathematica
    G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1]*n!/i!^j/(n-i*j)! /j!, {j, 0, n/i}]]]; T[n_, k_] := G[n-k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

E.g.f. for sequence G(0, k), G(1, k), ... is exp(x + (1/2)*x^2 + ... + (1/k!)*x^k).

Extensions

One term corrected by Alois P. Heinz, Sep 15 2013

A144417 Triangle in A144385 read upwards by columns.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 0, 0, 1, 10, 25, 10, 0, 0, 1, 15, 65, 75, 10, 0, 0, 1, 21, 140, 315, 175, 0, 0, 0, 1, 28, 266, 980, 1225, 280, 0, 0, 0, 1, 36, 462, 2520, 5565, 3780, 280, 0, 0, 0, 1, 45, 750, 5670, 19425, 26145, 9100, 0, 0, 0, 0, 1, 55
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 07 2008

Keywords

Examples

			Triangle begins:
1
1,0
1,1,0
1,3,1,0
1,6,7,0,0
1,10,25,10,0,0
1,15,65,75,10,0,0
1,21,140,315,175,0,0,0
		

Crossrefs

Column sums give A001680. Cf. A144385.

A347666 E.g.f.: exp( exp(x) * (1 + x + x^2 / 2 + x^3 / 6) - 1 ).

Original entry on oeis.org

1, 2, 8, 40, 239, 1648, 12778, 109476, 1023520, 10341878, 112067820, 1294254184, 15847382977, 204827368606, 2784056034014, 39665514607872, 590684848605779, 9170941154737032, 148120725648168260, 2483657480026985432, 43157660169344697996, 775898068395820783674
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Comments

Exponential transform of A000125.

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[Exp[x] (1 + x + x^2/2 + x^3/6) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] ((k^3 + 5 k + 6)/6) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A000125(k) * a(n-k).
Previous Showing 11-20 of 20 results.