cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A208355 Right edge of the triangle in A208101.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 14, 14, 42, 42, 132, 132, 429, 429, 1430, 1430, 4862, 4862, 16796, 16796, 58786, 58786, 208012, 208012, 742900, 742900, 2674440, 2674440, 9694845, 9694845, 35357670, 35357670, 129644790, 129644790, 477638700, 477638700, 1767263190
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 04 2012

Keywords

Comments

Number of achiral polyominoes composed of n+1 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. An achiral polyomino is identical to its reflection. - Robert A. Russell, Jan 20 2024

Examples

			a(0)=1; a(1)=1; a(2)=1; a(3)=2. - _Robert A. Russell_, Jan 19 2024
____      ________
\  /  /\  \  /\  /  /\     /\
 \/  /__\  \/__\/  /__\   /__\____
     \  /         /\  /\  \  /\  /
      \/         /__\/__\  \/__\/
		

Crossrefs

Polyominoes: A001683(n+2) (oriented), A000207 (unoriented). A369314 (chiral), A000108 (rooted), A047749 ({4,oo}).

Programs

  • Haskell
    a208355 n = a208101 n n
    a208355_list = map last a208101_tabl
    
  • Magma
    [Ceiling(Catalan(n div 2)): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
  • Maple
    A208355_list := proc(len) local D, b, h, R, i, k;
        D := [seq(0, j=0..len+2)]; D[1] := 1; b := true; h := 2; R := NULL;
        for i from 1 to 2*len do
            if b then
                for k from h by -1 to 2 do D[k] := D[k] - D[k-1] od;
                h := h + 1; R := R, abs(D[2]);
            else
                for k from 1 by 1 to h do D[k] := D[k] + D[k+1] od;
            fi;
            b := not b:
        od;
        return R
    end:
    A208355_list(38); # Peter Luschny, Dec 19 2017
  • Mathematica
    T[, 0] = 1; T[n, 1] := n; T[n_, n_] := T[n - 1, n - 2]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 2];
    a[n_] := T[n, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2018, from A208101 *)
    Table[If[EvenQ[n], Binomial[n,n/2]/(n/2+1), Binomial[n+1,(n+1)/2]/((n+3)/2)], {n,0,40}] (* Robert A. Russell, Jan 19 2024 *)

Formula

a(n) = A000108(floor((n+1)/2)), where A000108 = Catalan numbers.
a(n) = A208101(n,n).
a(n) = abs(A099363(n)).
Conjecture: -(n+3)*(n-2)*a(n) - 4*a(n-1) + 4*(n-1)^2*a(n-2) = 0. - R. J. Mathar, Aug 04 2015
From Robert A. Russell, Jan 19 2024: (Start)
a(2m) = C(2m,m)/(m+1); a(2m-1) = a(2m); a(n+2)/a(n) ~ 4.
a(n-1) = 2*A000207(n) - A001683(n+2) = A001683(n+2) - 2*A369314(n) = A000207(n) - A369314(n). (End)
G.f.: (G(z^2)+z*G(z^2)-1)/z, where G(z)=1+z*G(z)^2, the generating function for A000108. - Robert A. Russell, Jan 26 2024
G.f.: ((((1+z)*(1-sqrt(1-4*z^2)))/(2*z^2))-1)/z. - Robert A. Russell, Jan 28 2024
From Peter Bala, Feb 05 2024: (Start)
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A000245(k+1).
a(n) = (-2)^n * hypergeom([-n, 3/2, 2], [1, 4], 2). (End)

A295224 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 7, 6, 1, 1, 3, 12, 25, 19, 1, 1, 3, 19, 57, 108, 49, 1, 1, 4, 26, 118, 366, 492, 150, 1, 1, 4, 35, 203, 931, 2340, 2431, 442, 1, 1, 5, 46, 332, 1989, 7756, 16252, 12371, 1424, 1, 1, 5, 57, 494, 3766, 20254, 68685, 115940, 65169, 4522
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called H.
T(n,k) is the number of oriented polyominoes containing n k-gonal tiles of the hyperbolic regular tiling with Schläfli symbol {k,oo}. Stereographic projections of several of these tilings on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. T(n,2) could represent polyominoes of the Euclidean regular tiling with Schläfli symbol {2,oo}; T(n,2) = 1. - Robert A. Russell, Jan 21 2024

Examples

			Array begins:
  =====================================================
  n\k|    3     4      5       6        7         8
  ---|-------------------------------------------------
   1 |    1     1      1       1        1         1 ...
   2 |    1     1      1       1        1         1 ...
   3 |    1     2      2       3        3         4 ...
   4 |    4     7     12      19       26        35 ...
   5 |    6    25     57     118      203       332 ...
   6 |   19   108    366     931     1989      3766 ...
   7 |   49   492   2340    7756    20254     45448 ...
   8 |  150  2431  16252   68685   219388    580203 ...
   9 |  442 12371 115940  630465  2459730   7684881 ...
  10 | 1424 65169 854981 5966610 28431861 104898024 ...
  ...
		

Crossrefs

Columns k=3..6 are A001683(n+2), A005034, A005038, A221184(n-1).
Polyominoes: A295260 (unoriented), A070914 (rooted).

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#]&]/k;
    Table[T[n - k + 1, k], {n, 1, 13}, {k, n, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n, k, r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k) = u(n,k,1) + (if(n%2==0, u(n/2,k,1))-u(n,k,2))/2 + sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return u(n, k, 1) + ((u(n//2, k, 1) if n%2==0 else 0) - u(n, k, 2))//2 + sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/n for fixed k.

A006343 Arkons: number of elementary maps with n-1 nodes.

Original entry on oeis.org

1, 0, 1, 1, 4, 10, 34, 112, 398, 1443, 5387, 20482, 79177, 310102, 1228187, 4910413, 19792582, 80343445, 328159601, 1347699906, 5561774999, 23052871229, 95926831442, 400587408251, 1678251696379, 7051768702245, 29710764875014
Offset: 0

Views

Author

Keywords

References

  • K. Appel and W. Haken, Every planar map is four colorable. With the collaboration of J. Koch. Contemporary Mathematics, 98. American Mathematical Society, Providence, RI, 1989. xvi+741 pp. ISBN: 0-8218-5103-9.
  • F. R. Bernhart, Topics in Graph Theory Related to the Five Color Conjecture. Ph.D. Dissertation, Kansas State Univ., 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006343 0 = 1
    a006343 n = sum $ zipWith div
       (zipWith (*) (map (a007318 n) ks)
                    (map (\k -> a007318 (2*n - 3*k - 4) (n - 2*k - 2)) ks))
       (map (toInteger . (n - 1 -)) ks)
       where ks = [0 .. (n - 2) `div` 2]
    -- Reinhard Zumkeller, Aug 23 2012
  • Maple
    A006343:=n->add(binomial(n,k)*binomial(2*n-3*k-4,n-2*k-2)/(n-k-1), k=0..(n-2)/2): (1, seq(A006343(n), n=1..30)); # Wesley Ivan Hurt, Jun 22 2015
  • Mathematica
    a[n_] := Sum[ Binomial[n, k]*Binomial[2*n-3*k-4, n-2*k-2]/(n-k-1), {k, 0, (n-2)/2}]; a[0] = 1; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Dec 14 2012, from formula *)

Formula

a(n-1) = Sum (n-k-1)^(-1)*binomial(n, k)*binomial(2*n-3*k-4, n-2*k-2); k = 0..[ (n-2)/2 ], n >= 3.
From Peter Bala, Jun 22 2015: (Start)
O.g.f. A(x) equals 1/x * series reversion ( x/(1 + x^2*C(x)) ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108.
A(x) is an algebraic function satisfying x^3*A^3(x) - (x - 1)*A^2(x) + (x - 2)*A(x) + 1 = 0. (End)
a(n) ~ sqrt(s*(1 - s + 3*r^2*s^2) / (1 - r + 3*r^3*s)) / (2*sqrt(Pi) * n^(3/2) * r^(n - 1/2)), where r = 0.2229935155751761877673240243525445951244491757706... and s = 1.116796494086474135831052534637944909439048671327... are real roots of the system of equations 1 + (r-2)*s + r^3*s^3 = (r-1)*s^2, r + 2*s + 3*r^3*s^2 = 2 + 2*r*s. - Vaclav Kotesovec, Nov 27 2017
Conjecture: D-finite with recurrence: -(n+3)*(n-1)*a(n) +(11*n^2-2*n-45)*a(n-1) -(37*n+29)*(n-3)*a(n-2) +(29*n^2-125*n+78)*a(n-3) +(61*n-106)*(n-3)*a(n-4) -155*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Feb 20 2020

Extensions

Erroneously duplicated term 4 removed per Frank Bernhart's report by Max Alekseyev, Feb 11 2010

A057162 Signature-permutation of a Catalan Automorphism: rotate one step clockwise the triangulations of polygons encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 8, 6, 7, 4, 5, 22, 19, 20, 14, 15, 21, 16, 17, 9, 10, 18, 11, 12, 13, 64, 60, 61, 51, 52, 62, 53, 54, 37, 38, 55, 39, 40, 41, 63, 56, 57, 42, 43, 58, 44, 45, 23, 24, 46, 25, 26, 27, 59, 47, 48, 28, 29, 49, 30, 31, 32, 50, 33, 34, 35, 36, 196, 191, 192, 177, 178
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2000; entry revised Jun 06 2014

Keywords

Comments

This is a permutation of natural numbers induced when Euler's triangulation of convex polygons, encoded by the sequence A014486 in a straightforward way (via binary trees, cf. the illustration of the rotation of a triangulated pentagon, given in the Links section) are rotated clockwise.
In A057161 and A057162, the cycles between A014138(n-1)-th and A014138(n)-th term partition A000108(n) objects encoded by the corresponding terms of A014486 into A001683(n+2) equivalence classes of flexagons (or unlabeled plane boron trees), thus the latter sequence can be counted with the Maple procedure A057162_CycleCounts given below. Cf. also the comments in A057161.

Crossrefs

Inverse: A057161.
Also, an "ENIPS"-transform of A069773, and thus occurs as row 17 of A130402.
Other related permutations: A057163, A057164, A057501, A057503, A057505.
Cf. A001683 (cycle counts), A057544 (max cycle lengths).

Programs

  • Maple
    a(n) = CatalanRankGlobal(RotateTriangularizationR(A014486[n]))
    RotateTriangularizationR := n -> ReflectBinTree(RotateTriangularization(ReflectBinTree(n)));
    with(group); A057162_CycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,RotateTriangularization(CatalanUnrank(n,r)))]; od; a := [op(a),(`if`((n < 2),1,nops(convert(b,'disjcyc'))))]; od; RETURN(a); end;
    # See also the code in A057161.

Formula

As a composition of related permutations:
a(n) = A069768(A057508(n)).
a(n) = A057163(A057161(A057163(n))).
a(n) = A057164(A057503(A057164(n))). [For the proof, see pp. 53-54 in the "Introductory survey ..." draft, eq. 143.]

A057513 Number of separate orbits to which permutations given in A057511/A057512 (induced by deep rotation of general parenthesizations/plane trees) partition each A000108(n) objects encoded by A014486 between (A014138(n-1)+1)-th and (A014138(n))-th terms.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 56, 153, 451, 1357, 4212, 13308, 42898, 140276, 465324, 1561955, 5300285, 18156813, 62732842, 218405402, 765657940
Offset: 0

Views

Author

Antti Karttunen Sep 03 2000

Keywords

Comments

It is much faster to compute this sequence empirically with the given C-program than to calculate the terms with the formula in its present form.

Crossrefs

CountCycles given in A057502, for other procedures, follow A057511 and A057501.
Similarly generated sequences: A001683, A002995, A003239, A038775, A057507. Cf. also A000081.
Occurs for first time in A073201 as row 12. Cf. A057546 and also A000081.

Programs

  • Maple
    A057513 := proc(n) local i; `if`((0=n),1,(1/A003418(n-1))*add(A079216bi(n,i),i=1..A003418(n-1))); end;
    # Or empirically:
    DeepRotatePermutationCycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,DeepRotateL(CatalanUnrank(n,r)))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;

Formula

a(0)=1, a(n) = (1/A003418(n-1))*Sum_{i=1..A003418(n-1)} A079216(n, i) [Needs improvement.] - Antti Karttunen, Jan 03 2003

A073201 Array of cycle count sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 4, 1, 1, 1, 22, 11, 3, 1, 1, 1, 66, 31, 7, 2, 1, 1, 1, 217, 96, 22, 4, 3, 1, 1, 1, 715, 305, 66, 11, 7, 2, 1, 1, 1, 2438, 1007, 217, 30, 22, 4, 2, 2, 1, 1, 8398, 3389, 715, 93, 66, 11, 3, 5, 1, 1, 1, 29414, 11636, 2438, 292, 217, 30, 6, 14, 2, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the counts of separate orbits/cycles to which the Catalan bijection given in the corresponding row of A073200 partitions each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.
Note that for involutions (self-inverse Catalan bijections) this is always (A000108(n)+Affffff(n))/2, where Affffff is the corresponding "fix-count sequence" from the table A073202.

Crossrefs

Only the first known occurrence(s) given (marked with ? if not yet proved/unclear): rows 0, 2, 4, etc.: A007595, Row 1: A073191, Rows 6 (& 8): A073431, Row 7: A000108, Rows 12, 14, 20, ...: A057513, Rows 16, 18, ...: A003239, Row 57, ..., 164: A007123, Row 168: A073193, Row 261: A002995, Row 2614: A057507, Row 2618 (?), row 17517: A001683.

A089860 Permutation of natural numbers induced by Catalan automorphism *A089860 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 8, 6, 7, 4, 5, 21, 22, 19, 14, 15, 20, 16, 17, 9, 10, 18, 11, 12, 13, 58, 59, 62, 63, 64, 56, 60, 51, 37, 38, 52, 39, 40, 41, 57, 61, 53, 42, 43, 54, 44, 45, 23, 24, 46, 25, 26, 27, 55, 47, 48, 28, 29, 49, 30, 31, 32, 50, 33, 34, 35, 36, 170, 171, 174, 175, 176, 184
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
.....B...C.......C...A
......\./.........\./
...A...x...-->... .x...B...............A..().........()..A..
....\./.............\./.................\./....-->....\./...
.....x...............x...................x.............x....
(a . (b . c)) --> ((c . a) . b) ___ (a . ()) --> (() . a)
See the Karttunen OEIS-Wiki link for a detailed explanation of how to obtain a given integer sequence from this definition.

Crossrefs

Row 16 of A089840. Inverse of A089862. a(n) = A089855(A069770(n)) = A069770(A089851(n)) = A069770(A074680(A069770(n))) = A057163(A089862(A057163(n))).
Number of cycles: A001683 (probably, not checked). Number of fixed points: A019590. Max. cycle size & LCM of all cycle sizes: A089410 (in each range limited by A014137 and A014138).

Extensions

A graphical description and constructive version of Scheme-implementation added by Antti Karttunen, Jun 04 2011

A089862 Permutation of natural numbers induced by Catalan automorphism *A089862 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 5, 6, 4, 17, 18, 20, 21, 22, 12, 13, 15, 16, 19, 11, 14, 9, 10, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 31, 32, 34, 35, 36, 40, 41, 43, 44, 47, 52, 53, 56, 60, 30, 33, 39, 42, 51, 28, 37, 23, 24, 29, 38, 25, 26, 27, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
.A...B...............C...A
..\./.................\./
...x...C...-->.....B...x...............()..A.........A..()..
....\./.............\./.................\./....-->....\./...
.....x...............x...................x.............x....
((a . b) . c) --> (b . (c . a)) __ (() . a) ----> (a . ())
See the Karttunen OEIS-Wiki link for a detailed explanation of how to obtain a given integer sequence from this definition.

Crossrefs

Row 20 of A089840. Inverse of A089860. a(n) = A089853(A069770(n)) = A069770(A089857(n)) = A069770(A074679(A069770(n))) = A057163(A089860(A057163(n))). Number of cycles: A001683 (seems to be, not checked). Number of fixed points: A019590. Max. cycle size & LCM of all cycle sizes: A089410 (in each range limited by A014137 and A014138).

Extensions

A graphical description and constructive version of Scheme-implementation added by Antti Karttunen, Jun 04 2011

A005038 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 2, 12, 57, 366, 2340, 16252, 115940, 854981, 6444826, 49554420, 387203390, 3068067060, 24604111560, 199398960212, 1631041938108, 13451978877748, 111765327780200, 934774244822704, 7865200653146905
Offset: 1

Views

Author

Keywords

Comments

Also, with a different offset, number of colored quivers in the 3-mutation class of a quiver of Dynkin type A_n. - N. J. A. Sloane, Jan 22 2013
Number of oriented polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 23 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A295224.
Polyominoes: A005040 (unoriented), A369471 (chiral), A369472 (achiral), A001683(n+2) {3,oo}, A005034 {4,oo}, A221184{n-1} {6,oo}.

Programs

  • Mathematica
    p=5; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

Formula

a(n) ~ 2^(8*n + 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005040(n) + A369471(n) = 2*A005040(n) - A369472(n) = 2*A369471(n) + A369472(n). - Robert A. Russell, Jan 23 2024

Extensions

a(21) corrected by Sean A. Irvine, Mar 11 2016
Name edited by Andrew Howroyd, Nov 20 2017

A057503 Signature-permutation of a Catalan Automorphism: Deutsch's 1998 bijection on Dyck paths.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 4, 6, 22, 21, 18, 17, 20, 13, 12, 10, 9, 11, 15, 14, 16, 19, 64, 63, 59, 58, 62, 50, 49, 46, 45, 48, 55, 54, 57, 61, 36, 35, 32, 31, 34, 27, 26, 24, 23, 25, 29, 28, 30, 33, 41, 40, 38, 37, 39, 43, 42, 44, 47, 52, 51, 53, 56, 60, 196, 195, 190, 189, 194
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

Deutsch shows in his 1998 paper that this automorphism maps the number of returns of Dyck path to the height of the last peak, i.e., that A057515(n) = A080237(A057503(n)) holds for all n, thus the two parameters have the same distribution.
From the recursive forms of A057161 and A057503 it is seen that both can be viewed as a convergent limits of a process where either the left or right side argument of A085201 in formula for A057501 is "iteratively recursivized", and on the other hand, both of these can then in turn be made to converge towards A057505, when the other side of the formula is also "recursivized" in the same way. - Antti Karttunen, Jun 06 2014

Crossrefs

Inverse: A057504. Row 17 of A122285. Cf. A057501, A057161, A057505.
The number of cycles, count of the fixed points, maximum cycle sizes and LCM's of all cycle sizes in range [A014137(n-1)..A014138(n)] of this permutation are given by LEFT(LEFT(A001683)), LEFT(A019590), A057544 and A057544, the same sequences as for A057162 because this is a conjugate of it (cf. the Formula section).

Formula

a(0) = 0, and for n >= 1, a(n) = A085201(A072771(n), A057548(a(A072772(n)))). [This formula reflects the S-expression implementation given first in the Program section: A085201 is a 2-ary function corresponding to 'append', A072771 and A072772 correspond to 'car' and 'cdr' (known also as first/rest or head/tail in some languages), and A057548 corresponds to the unary form of function 'list'].
a(n) = A057164(A057162(A057164(n))). [For the proof, see pp. 53-54 in the "Introductory survey ..." draft, eq. 144.]
Other identities:
A057515(n) = A080237(a(n)) holds for all n. [See the Comments section.]

Extensions

Equivalence with Emeric Deutsch's 1998 bijection realized Dec 15 2006 and entry edited accordingly by Antti Karttunen, Jan 16 2007
Previous Showing 11-20 of 30 results. Next