cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A065488 Decimal expansion of Product_{p prime} (1 + 1/(p^2-p-1)).

Original entry on oeis.org

2, 6, 7, 4, 1, 1, 2, 7, 2, 5, 5, 7, 0, 0, 2, 1, 5, 0, 8, 9, 6, 0, 4, 1, 1, 8, 3, 0, 4, 4, 5, 4, 8, 8, 0, 3, 7, 5, 0, 2, 3, 9, 8, 6, 2, 8, 3, 9, 7, 6, 9, 1, 9, 8, 5, 2, 0, 0, 8, 1, 9, 0, 4, 1, 9, 6, 0, 8, 6, 5, 9, 5, 6, 1, 0, 5, 3, 0, 2, 8, 6, 8, 6, 4, 4, 8, 5, 0, 9, 2, 9, 7, 1, 7, 3, 4, 8, 5, 7
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

This is 1/Artin's constant, see A005596.

Examples

			2.67411272557002150896041183...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1200; digits = 99; terms = 1200; P[n_] := PrimeZetaP[n ]; LR = Join[{0, 0}, LinearRecurrence[{2, 0, -1}, {2, 3, 6}, term+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p^2-p-1)) \\ Amiram Eldar, Mar 15 2021

A065178 Number of site swap patterns with 2 balls and exact period n.

Original entry on oeis.org

1, 2, 6, 15, 42, 107, 294, 780, 2128, 5781, 15918, 43885, 122010, 340323, 954394, 2685930, 7588770, 21507696, 61144062, 174283887, 498012094, 1426213191, 4092816966, 11767176070, 33890202192, 97761428205, 282424564744
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

When interspersed with 0's, exponents in expansion of A065481 as a product zeta(n)^(-a(n)).

Examples

			We have one period 1 (2), two period 2 (31/13 and 40/04) and six period three 2-ball siteswaps (312, 330, 411, 420, 501, 600) (The average of the digits is always 2).
		

Crossrefs

Programs

  • Maple
    [seq(DistSS(p,2),p=1..60)];
    A065178 := proc(n)
        add( mobius(n/d)*(3^d-2^d),d=numtheory[divisors](n)) /n ;
    end proc:
    seq(A065178(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * (3^#-2^#)&] / n; Array[a, 30] (* Jean-François Alcover, Mar 05 2016, after R. J. Mathar *)

Formula

a(n) ~ 3^n/n. - Vaclav Kotesovec, Mar 05 2016
Inverse Euler transform of A133494. - Alois P. Heinz, Jun 23 2018
G.f.: Sum_{k>=1} mu(k) * log(1 + x^k/(1 - 3*x^k))/k. - Seiichi Manyama, Apr 14 2025

A059865 Product_{i=4..n} (prime(i) - 6).

Original entry on oeis.org

1, 1, 1, 1, 5, 35, 385, 5005, 85085, 1956955, 48923875, 1516640125, 53082404375, 1964048961875, 80526007436875, 3784722349533125, 200590284525255625, 11032465648889059375, 672980404582232621875, 43743726297845120421875
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Arises in Hardy-Littlewood prime k-tuplet conjectural formulas. Also the sequence gives the exact numbers of X42424Y difference-pattern in dRRS[m], where m=modulus=A002110(n). See A049296 (=dRRS[210]=list of first differences of reduced residue system modulo 210=4th primorial). A pattern X42424Y corresponds to a residue-sextuple or it is their difference-quintuple, X,Y > 4. Analogous pattern for primes is in A022008.
a(352) has 1001 decimal digits. - Michael De Vlieger, Mar 06 2017

Examples

			a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
 Also in one period of dRRS with 2,6,30,210,2310,... modulus [A002110(n)] 1,2,8,48,480,... differences occur [A005867(n)]. The number of X42424Y residue-difference-patterns are 0,1,1,1,5,... respectively starting at suitable residues coprime to A002110(n).
		

References

  • See A059862 for references.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.

Crossrefs

Programs

  • Mathematica
    Table[Product[Prime@ i - 6, {i, 4, n}], {n, 19}] (* Michael De Vlieger, Mar 06 2017 *)
  • PARI
    a(n) = prod(k=4, n, prime(k) - 6); \\ Michel Marcus, Mar 06 2017

A065476 Decimal expansion of Product_{p prime >= 3} (1 - (p+2)/p^3).

Original entry on oeis.org

7, 2, 3, 6, 4, 8, 4, 0, 2, 2, 9, 8, 2, 0, 0, 0, 0, 9, 4, 0, 8, 8, 4, 9, 1, 4, 9, 8, 0, 9, 1, 2, 7, 5, 9, 9, 0, 4, 1, 7, 8, 3, 7, 5, 1, 5, 7, 3, 0, 7, 7, 0, 2, 9, 1, 7, 6, 1, 1, 9, 8, 8, 9, 7, 9, 1, 2, 5, 8, 8, 3, 5, 2, 5, 1, 4, 3, 1, 5, 2, 6, 2, 6, 9, 2, 8, 5, 2, 1, 4, 9, 7, 7, 3, 1, 3, 2, 9
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.7236484022982000094088491498...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 98; terms = 500; P[n_] := PrimeZetaP[n] - 1/2^n; LR = Join[{0, 0}, LinearRecurrence[{0, 1, 2}, {-2, -6, -2}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - (p+2)/p^3, 1, 3) \\ Amiram Eldar, Mar 15 2021

A065489 Decimal expansion of Product_{p prime} (1 + 1/(p^2+p-1)).

Original entry on oeis.org

1, 4, 1, 9, 5, 6, 2, 8, 8, 0, 5, 0, 5, 4, 8, 5, 9, 1, 9, 3, 1, 7, 2, 3, 5, 8, 6, 1, 7, 8, 9, 7, 3, 5, 3, 5, 9, 1, 6, 6, 0, 7, 1, 5, 8, 6, 3, 0, 5, 1, 2, 2, 5, 4, 2, 6, 9, 8, 9, 8, 3, 6, 9, 5, 5, 6, 4, 3, 3, 0, 9, 7, 1, 3, 3, 9, 4, 7, 1, 6, 0, 8, 6, 3, 9, 9, 4, 0, 3, 6, 9, 4, 8, 0, 2, 7, 9, 4, 9
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			1.419562880505485919317235861789735359... = 1/0.704442200999....
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1200; digits = 99; terms = 1200; P[n_] := PrimeZetaP[n ]; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {2, -3, 6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p^2+p-1)) \\ Amiram Eldar, Mar 15 2021

Formula

1 divided by A065463. - R. J. Mathar, Mar 26 2011

A065466 Decimal expansion of Product_{p prime} (1 - 1/(p^3*(p+1))).

Original entry on oeis.org

9, 4, 7, 7, 3, 3, 2, 6, 2, 1, 4, 3, 6, 7, 5, 3, 7, 5, 9, 3, 9, 5, 2, 1, 5, 3, 7, 6, 5, 4, 1, 8, 9, 6, 1, 3, 0, 3, 3, 6, 3, 1, 6, 3, 2, 3, 1, 7, 4, 1, 3, 8, 5, 2, 8, 2, 8, 7, 5, 1, 0, 8, 8, 9, 0, 9, 3, 2, 3, 3, 2, 9, 4, 7, 8, 9, 8, 9, 9, 8, 7, 1, 3, 9, 5, 3, 4, 4, 1, 2, 8, 2, 6, 1, 3, 4, 4, 9
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.947733262143675375939521537654189613...
		

Crossrefs

Cf. A078085.

Programs

  • Mathematica
    $MaxExtraPrecision = 600; digits = 98; terms = 600; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0, 0}, LinearRecurrence[{-2, -1, 0, 1, 1}, {-4, 5, -6, 7, -12}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^3*(p+1))) \\ Amiram Eldar, Mar 13 2021

A065480 Decimal expansion of Product_{p prime} (1 - 1/(p^2+p-1)).

Original entry on oeis.org

6, 6, 9, 5, 8, 0, 2, 9, 0, 5, 3, 9, 0, 6, 2, 3, 6, 7, 6, 3, 5, 0, 2, 5, 6, 9, 5, 6, 1, 2, 4, 3, 4, 2, 2, 7, 2, 1, 7, 3, 3, 9, 8, 2, 5, 4, 1, 6, 2, 3, 3, 0, 2, 5, 6, 2, 4, 6, 5, 4, 6, 2, 6, 3, 3, 0, 9, 8, 3, 6, 6, 1, 9, 9, 5, 4, 7, 2, 4, 5, 7, 1, 4, 5, 7, 5, 6, 6, 2, 6, 0, 3, 8, 6, 9, 6, 3, 8
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The probability that two numbers are coprime given that they are both coprime to a randomly chosen third number. - Luke Palmer, Apr 27 2019

Examples

			0.6695802905390623676350256956124342...
		

Crossrefs

Programs

  • Mathematica
    digits = 98; Exp[NSum[(1/2)*(-2 + (-2)^n - ((1/2)*(-1 - Sqrt[5]))^n*(-1 + Sqrt[5]) + ((1/2)*(-1 + Sqrt[5]))^n*(1 + Sqrt[5]))*PrimeZetaP[n - 1]/(n - 1), {n, 3, Infinity}, WorkingPrecision -> 4 digits, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2+p-1)) \\ Amiram Eldar, Mar 14 2021

Formula

Equals A065473*zeta(2)/A065463. - Luke Palmer, Apr 27 2019

A065493 Decimal expansion of the Feller-Tornier constant (1 + A065474)/2.

Original entry on oeis.org

6, 6, 1, 3, 1, 7, 0, 4, 9, 4, 6, 9, 6, 2, 2, 3, 3, 5, 2, 8, 9, 7, 6, 5, 8, 4, 6, 2, 7, 4, 1, 1, 8, 5, 3, 3, 2, 8, 5, 4, 7, 5, 2, 8, 9, 8, 3, 2, 9, 1, 6, 3, 5, 4, 9, 8, 0, 9, 0, 5, 6, 2, 6, 2, 2, 6, 6, 2, 5, 0, 3, 1, 7, 4, 3, 1, 2, 2, 3, 0, 4, 9, 4, 2, 2, 6, 1, 7, 4, 0, 7, 8, 4, 2, 8, 1, 8, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The asymptotic density of numbers with an even number of non-unitary prime divisors (A333634). - Amiram Eldar, May 23 2020
Named after the Croatian-American mathematician William Feller (1906-1970) and the German mathematician Erhard Tornier (1894-1982). - Amiram Eldar, Jun 16 2021

Examples

			0.661317049469622335289765846274...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4.1, p. 106.

Crossrefs

Programs

  • Mathematica
    digits = 98; r[n_] := -2^n; 1/2 + (1/2) Exp[NSum[r[n]*(PrimeZetaP[2*n]/n), {n, 1, Infinity}, NSumTerms -> 1000, WorkingPrecision -> 2 digits ]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    (1 + prodeulerrat(1 - 2/p^2))/2 \\ Amiram Eldar, Mar 17 2021

A118266 Coefficient of q^n in (1-q)^5/(1-5q); dimensions of the enveloping algebra of the derived free Lie algebra on 5 letters.

Original entry on oeis.org

1, 0, 10, 40, 205, 1024, 5120, 25600, 128000, 640000, 3200000, 16000000, 80000000, 400000000, 2000000000, 10000000000, 50000000000, 250000000000, 1250000000000, 6250000000000, 31250000000000, 156250000000000
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2006

Keywords

Comments

For n>=5, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5} such that for fixed, different x_1, x_2, x_3, x_4, x_5 in {1,2,...,n} and fixed y_1, y_2, y_3, y_ 4, y_5 in {1,2,3,4,5} we have f(x_i)<>y_i, (i=1,2,3,4,5). - Milan Janjic, May 13 2007

References

  • C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.

Crossrefs

Programs

  • Maple
    f:=n->add((-1)^k*binomial(5,k)*5^(n-k),k=0..min(n,4)): seq(f(i),i=0..15);
  • Mathematica
    a[n_] := If[n<6, {1, 0, 10, 40, 205, 1024}[[n+1]], 1024*5^(n-5)];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 10 2018 *)

Formula

G.f.: (1-q)^5/(1-5q) sum( (-1)^k*C(5,k) 5^(n-k); k=0..min(n,5));
a(n) = 1024*5^(n-5) for n>5. - Jean-François Alcover, Dec 10 2018

A269843 Decimal expansion of Hardy-Littlewood constant C_5 = Product_{p prime > 5} 1/(1-1/p)^5 (1-5/p).

Original entry on oeis.org

4, 0, 9, 8, 7, 4, 8, 8, 5, 0, 8, 8, 2, 3, 6, 4, 7, 4, 4, 7, 8, 7, 8, 1, 2, 1, 2, 3, 3, 7, 9, 5, 5, 2, 7, 7, 8, 9, 6, 3, 5, 8, 0, 1, 3, 2, 5, 4, 9, 4, 5, 4, 6, 9, 8, 2, 6, 3, 3, 6, 3, 9, 8, 8, 2, 2, 6, 4, 8, 2, 3, 6, 1, 7, 3, 9, 6, 5, 9, 6, 5, 1, 5, 4, 6, 0, 8, 4, 5, 4, 4, 9, 9, 6, 2, 0, 2, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Examples

			0.4098748850882364744787812123379552778963580132549454698263363988...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 99; terms = 800; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n - 1/5^n; LR = Join[{0, 0}, LinearRecurrence[{6, -5}, {-20, -120}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First
  • PARI
    prodeulerrat(1/(1-1/p)^5*(1-5/p), 1, 7) \\ Amiram Eldar, Mar 11 2021
Previous Showing 31-40 of 68 results. Next