cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A005596 Decimal expansion of Artin's constant Product_{p=prime} (1-1/(p^2-p)).

Original entry on oeis.org

3, 7, 3, 9, 5, 5, 8, 1, 3, 6, 1, 9, 2, 0, 2, 2, 8, 8, 0, 5, 4, 7, 2, 8, 0, 5, 4, 3, 4, 6, 4, 1, 6, 4, 1, 5, 1, 1, 1, 6, 2, 9, 2, 4, 8, 6, 0, 6, 1, 5, 0, 0, 4, 2, 0, 9, 4, 7, 4, 2, 8, 0, 2, 4, 1, 7, 3, 5, 0, 1, 8, 2, 0, 4, 0, 0, 2, 8, 0, 8, 2, 3, 4, 4, 3, 0, 4, 3, 1, 7, 0, 8, 7, 2, 5, 0, 5, 6, 8, 9, 8, 1, 6, 0, 3
Offset: 0

Views

Author

Keywords

Comments

On Simon Plouffe's web page (and in the book freely available at Gutenberg project) the value is given with an error of +1e-31, as "...651641..." instead of "...641641...". In the reference [Wrench, 1961] cited there, these digits are correct. They are also correct on the Plouffe's Inverter page, as computed by Oliveira e Silva, who comments it took 1 hour at 200 MHz with Mathematica. Using Amiram Eldar's PARI program, the same 500 digits are computed instantly (less than 0.1 sec). - M. F. Hasler, Apr 20 2021
Named after the Austrian mathematician Emil Artin (1898-1962). - Amiram Eldar, Jun 20 2021

Examples

			0.37395581361920228805472805434641641511162924860615...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 169.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a = Exp[-NSum[ (LucasL[n] - 1)/n PrimeZetaP[n], {n, 2, Infinity}, PrecisionGoal -> 500, WorkingPrecision -> 500, NSumTerms -> 100000]]; RealDigits[a, 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 taken from Mathematica's Help file on PrimeZetaP *)
  • PARI
    prodinf(n=2,1/zeta(n)^(sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)) \\ Charles R Greathouse IV, Aug 27 2014
    
  • PARI
    prodeulerrat(1-1/(p^2-p)) \\ Amiram Eldar, Mar 12 2021

Formula

Equals Product_{j>=2} 1/Zeta(j)^A006206(j), where Zeta = A013661, A002117 etc. is Riemann's zeta function. - R. J. Mathar, Feb 14 2009
Equals Sum_{k>=1} mu(k)/(k*phi(k)), where mu is the Moebius function (A008683) and phi is the Euler totient function (A000010). - Amiram Eldar, Mar 11 2020
Equals 1/A065488. - Vaclav Kotesovec, Jul 17 2021

Extensions

More terms from Tomás Oliveira e Silva (http://www.ieeta.pt/~tos)

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009

A348507 a(n) = A003959(n) - n, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 19, 7, 8, 1, 24, 1, 10, 9, 65, 1, 30, 1, 34, 11, 14, 1, 84, 11, 16, 37, 44, 1, 42, 1, 211, 15, 20, 13, 108, 1, 22, 17, 122, 1, 54, 1, 64, 51, 26, 1, 276, 15, 58, 21, 74, 1, 138, 17, 160, 23, 32, 1, 156, 1, 34, 65, 665, 19, 78, 1, 94, 27, 74, 1, 360, 1, 40, 69, 104, 19, 90, 1, 406, 175, 44, 1, 204
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Comments

a(p*(n/p)) - (n/p) = (p+1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as (A003959(p*(n/p)) - (p*(n/p))) - (n/p) = (p+1)*A003959(n/p)-((p+1)*(n/p)) = (p+1)*(A003959(n/p)-(n/p)) = (p+1)*a(n/p). This implies that a(n) >= A003415(n) for all n. (See also comments in A348970). - Antti Karttunen, Nov 06 2021

Crossrefs

Cf. A348971 (Möbius transform) and A349139, A349140, A349141, A349142, A349143 (other Dirichlet convolutions).
Cf. also A168065 (the arithmetic mean of this and A322582), A168066.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    
  • PARI
    A020639(n) = if(1==n,n,(factor(n)[1, 1]));
    A348507(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= (1+spf)); (s); }; \\ (Compare this with similar programs given in A003415 and in A322582) - Antti Karttunen, Nov 06 2021

Formula

a(n) = A003959(n) - n.
a(n) = A348508(n) + n.
a(n) = A001065(n) + A348029(n).
From Antti Karttunen, Nov 06 2021: (Start)
a(n) = Sum_{d|n} A348971(d).
a(n) = A003415(n) + A348970(n).
For all n >= 1, A322582(n) <= A003415(n) <= a(n).
For n > 1, a(n) = a(A032742(n))*(1+A020639(n)) + A032742(n). [See the comments above, and compare this with Reinhard Zumkeller's May 09 2011 recursive formula for A003415] (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065488 - 1. - Amiram Eldar, Jun 01 2025

A348029 a(n) = A003959(n) - sigma(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 12, 3, 0, 0, 8, 0, 0, 0, 50, 0, 9, 0, 12, 0, 0, 0, 48, 5, 0, 24, 16, 0, 0, 0, 180, 0, 0, 0, 53, 0, 0, 0, 72, 0, 0, 0, 24, 18, 0, 0, 200, 7, 15, 0, 28, 0, 72, 0, 96, 0, 0, 0, 48, 0, 0, 24, 602, 0, 0, 0, 36, 0, 0, 0, 237, 0, 0, 20, 40, 0, 0, 0, 300, 135, 0, 0, 64, 0, 0, 0, 144, 0, 54, 0, 48, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 20 2021

Keywords

Comments

Inverse Möbius transform of A348030.

Crossrefs

Cf. A000203, A003959, A005117 (positions of zeros), A013661, A065488, A348030.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - DivisorSigma[1, n]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348029(n) = (A003959(n)-sigma(n));

Formula

a(n) = A003959(n) - A000203(n).
a(n) = Sum_{d|n} A348030(d).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2-p-1)) - Pi^2/6 = A065488 - A013661 = 1.0291786... . - Amiram Eldar, May 29 2025

A351219 Multiplicative with a(p^e) = Fibonacci(e+1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 13, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 05 2022

Keywords

Comments

These numbers were called Zetanacci numbers by Bruckman (1983).
The distinct values of the terms are in A065108.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Fibonacci[e + 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = fibonacci(f[k,2]+1); f[k,2]=1); factorback(f); \\ Michel Marcus, Feb 05 2022
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X - X^2))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2022
  • Python
    from math import prod
    from sympy import factorint, fibonacci
    def a(n): return prod(fibonacci(e+1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Feb 05 2022
    

Formula

Dirichlet g.f.: Product_{p prime} 1/(1 - p^(-s) - p^(-2*s)).
a(n) = 1 if and only if n is a squarefree number (A005117).
Sum_{k=1..n} a(k) ~ c * n, where c = A065488 = Product_{p primes} (1 + 1/(p^2 - p - 1)) = 2.67411272557... - Vaclav Kotesovec, Feb 10 2022

A306190 a(n) = p^2 - p - 1 where p = prime(n), the n-th prime.

Original entry on oeis.org

1, 5, 19, 41, 109, 155, 271, 341, 505, 811, 929, 1331, 1639, 1805, 2161, 2755, 3421, 3659, 4421, 4969, 5255, 6161, 6805, 7831, 9311, 10099, 10505, 11341, 11771, 12655, 16001, 17029, 18631, 19181, 22051, 22649, 24491, 26405, 27721, 29755, 31861, 32579, 36289
Offset: 1

Views

Author

Kritsada Moomuang, Jan 28 2019

Keywords

Comments

Terms are divisible by 5 iff p is of the form 10*m + 3 (A030431).

Examples

			a(3) = 19 because 5^2 - 5 - 1 = 19.
		

Crossrefs

Supersequence of A091568.
Subsequence of A028387 or A165900.
Second column of A378979.
A039914 is an essentially identical sequence.

Programs

  • Maple
    map(p -> p^2-p-1, [seq(ithprime(i),i=1..100)]); # Robert Israel, Mar 11 2019
  • Mathematica
    Table[Prime[n]^2-Prime[n]-1, {n, 1, 100}] (* Jinyuan Wang, Feb 02 2019 *)
  • PARI
    a(n) = {p=prime(n);p^2-p-1;} \\ Jinyuan Wang, Feb 02 2019

Formula

a(n) = A036689(n) - 1.
a(n) = A036690(n) - A072055(n).
a(n) = A060800(n) - A089241(n).
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065488.
Product_{n>=2} (1 - 1/a(n)) = A065479. (End)
a(n) = A033879(A001248(n)). [Deficiency of squares of primes] - Antti Karttunen, Dec 13 2024

A079579 Totally multiplicative with p -> (p-1)*p, p prime.

Original entry on oeis.org

1, 2, 6, 4, 20, 12, 42, 8, 36, 40, 110, 24, 156, 84, 120, 16, 272, 72, 342, 80, 252, 220, 506, 48, 400, 312, 216, 168, 812, 240, 930, 32, 660, 544, 840, 144, 1332, 684, 936, 160, 1640, 504, 1806, 440, 720, 1012, 2162, 96, 1764, 800, 1632, 624, 2756, 432, 2200, 336
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2003

Keywords

Comments

The Dirichlet inverse is 1, -2, -6, 0, -20, 12, -42, 0, 0, 40, -110, 0, -156, 84, 120, 0, -272, ..., i.e., the sequence defined by mu(n)*a(n). - R. J. Mathar, Dec 20 2011

Crossrefs

Programs

  • Haskell
    a079579 1 = 1
    a079579 n = product $ zipWith (*) pfs $ map (subtract 1) pfs
       where pfs = a027746_row n
    -- Reinhard Zumkeller, Jan 05 2012
    
  • Mathematica
    f[p_, e_] := ((p - 1)*p)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Oct 23 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]*(f[i,1]-1))^f[i,2]); } \\ Amiram Eldar, Oct 23 2022

Formula

a(n) <= n^2.
a(n) = n iff n = 2^k.
a(n) = n*A003958(n).
Multiplicative sequence with a(p^e) = p^e*(p-1)^e for prime p. - Jaroslav Krizek, Nov 01 2009
Dirichlet g.f.: sum_{n>=1} a(n)/n^s = Product_{primes p} 1/(1+p^(1-s)-p^(2-s)). - R. J. Mathar, Dec 20 2011
From Amiram Eldar, Oct 23 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(6)/(3*zeta(2)*zeta(3)) = 2*Pi^4/(945*zeta(3)) = A068468 / 3 = 0.171503... .
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2-p-1)) (A065488). (End)

A167338 Totally multiplicative sequence with a(p) = p*(p+1) = p^2+p for prime p.

Original entry on oeis.org

1, 6, 12, 36, 30, 72, 56, 216, 144, 180, 132, 432, 182, 336, 360, 1296, 306, 864, 380, 1080, 672, 792, 552, 2592, 900, 1092, 1728, 2016, 870, 2160, 992, 7776, 1584, 1836, 1680, 5184, 1406, 2280, 2184, 6480, 1722, 4032, 1892, 4752, 4320, 3312, 2256, 15552
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*n, {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 1/(1/X/p - p - 1))/(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Apr 05 2023

Formula

Multiplicative with a(p^e) = (p*(p+1))^e.
If n = Product p(k)^e(k) then a(n) = Product (p(k)*(p(k)+1))^e(k).
a(n) = n * A003959(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + p - 1)) = A065489 = 1.419562880505485919317235861789735359166071586305122542698983695564330971... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 - 2/p^2 - 1/p^3) = 0.8913709085... . - Amiram Eldar, Dec 15 2022, c = A065488/3. - Vaclav Kotesovec, Apr 05 2023
Dirichlet g.f.: zeta(s-2) * Product_{p prime} (1 + 1/(p^(s-1) - p - 1)). - Vaclav Kotesovec, Apr 05 2023
Showing 1-8 of 8 results.