cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 68 results. Next

A065490 Exponents in expansion of constant A065463 as Product_{n>1} zeta(n)^(-a(n)).

Original entry on oeis.org

0, 1, -1, 1, -2, 3, -4, 5, -8, 13, -18, 25, -40, 62, -90, 135, -210, 324, -492, 750, -1164, 1809, -2786, 4305, -6710, 10460, -16264, 25350, -39650, 62057, -97108, 152145, -238818, 375165, -589520, 927200, -1459960, 2300346, -3626200
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The sequence 1,1,1,1,2,3,4,5,8,13,18,25,40,62,90,135,... appears in Lehrer-Segal on p. 285, in the following context: Let V=Sum_{k>=1} V_k be the graded vector space H_*(PC^oo)[1], which has Poincaré series [or Poincare series] p(t)=t/(1-t^2). This sequence gives the dimensions of the free graded Lie algebra L on V.
Inverse Euler transform of F(1-n) where F() is Fibonacci numbers A000045. - Michael Somos, Jul 21 2003

Crossrefs

Cf. A065463.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^#*MoebiusMu[n/#]*(Fibonacci[#+1] + Fibonacci[# -1]-1)&]/n; Array[a, 40] (* Jean-François Alcover, Dec 03 2015, adapted from PARI *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,(-1)^d*moebius(n/d)*(fibonacci(d+1)+fibonacci(d-1)-1))/n)

Formula

a(n) = (1/n)*Sum_{d|n} (-1)^d*mu(n/d)*(Fibonacci(d-1)+Fibonacci(d+1)-1). - Vladeta Jovovic, May 03 2003
a(n) ~ (-1)^n * phi^n / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms and formula from Christian G. Bower, Aug 23 2002

A065491 Exponents in expansion of constant A065479 as a product zeta(n)^(-a(n)).

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 14, 25, 48, 88, 168, 310, 590, 1103, 2092, 3945, 7500, 14216, 27102, 51627, 98694, 188766, 361936, 694565, 1335466, 2570375, 4954744, 9561045, 18473140, 35728300, 69176558, 134063535, 260062168, 504911460, 981117286, 1907939760, 3713106350
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Inverse Euler transform of A001045. - R. J. Mathar, Jul 26 2010

Crossrefs

Cf. A065479.

Formula

a(n) ~ 2^(n+1)/n. - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from R. J. Mathar, Jul 26 2010

A065467 Decimal expansion of Product_{p prime} (1 - 1/(p^4*(p+1))).

Original entry on oeis.org

9, 7, 5, 8, 2, 4, 1, 5, 3, 0, 4, 7, 6, 6, 8, 2, 4, 1, 6, 7, 9, 0, 1, 1, 4, 3, 6, 5, 9, 4, 7, 9, 9, 8, 3, 1, 9, 7, 1, 7, 6, 4, 9, 7, 1, 2, 2, 9, 2, 1, 2, 6, 0, 9, 4, 4, 2, 5, 1, 5, 7, 7, 3, 2, 4, 4, 2, 0, 6, 2, 6, 7, 0, 6, 8, 5, 8, 3, 6, 0, 8, 3, 6, 6, 5, 4, 6, 1, 8, 5, 6, 3, 6, 8, 5, 7, 3, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.97582415304766824167901143659479983...
		

Crossrefs

Cf. A078084.

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 98; terms = 500; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0, 0, 0}, LinearRecurrence[{-2, -1, 0, 0, 1, 1}, {-5, 6, -7, 8, -9, 5}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^4*(p+1))) \\ Amiram Eldar, Mar 13 2021

A065468 Decimal expansion of Product_{p prime} (1 - 1/(p^5*(p+1))).

Original entry on oeis.org

9, 8, 8, 5, 0, 4, 3, 9, 7, 7, 4, 1, 2, 4, 6, 9, 0, 8, 7, 5, 1, 1, 0, 6, 6, 2, 3, 8, 5, 1, 1, 8, 6, 6, 6, 4, 4, 0, 0, 9, 5, 8, 0, 8, 3, 2, 7, 5, 3, 4, 6, 1, 8, 8, 1, 2, 0, 5, 1, 3, 9, 2, 6, 2, 4, 4, 0, 5, 7, 8, 4, 7, 5, 7, 3, 0, 8, 5, 7, 9, 3, 5, 1, 8, 8, 8, 0, 0, 7, 5, 3, 6, 7, 7, 2, 5, 7, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.9885043977412469087511066238511866644...
		

Crossrefs

Cf. A078083.

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 98; terms = 500; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0, 0, 0, 0}, LinearRecurrence[{-2, -1, 0, 0, 0, 1, 1}, {-6, 7, -8, 9, -10, 11, -18}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[ NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^5*(p+1))) \\ Amiram Eldar, Mar 13 2021

A065477 Decimal expansion of constant 5 * Pi^2 * A065476 / 48.

Original entry on oeis.org

7, 4, 3, 9, 7, 1, 1, 9, 3, 3, 5, 0, 3, 7, 4, 7, 4, 4, 6, 8, 6, 5, 5, 9, 6, 0, 7, 5, 8, 5, 6, 5, 0, 0, 0, 0, 9, 8, 6, 0, 0, 8, 6, 9, 2, 8, 6, 1, 3, 2, 7, 8, 7, 3, 3, 1, 9, 5, 1, 2, 3, 8, 9, 1, 7, 2, 2, 4, 6, 7, 4, 3, 0, 5, 6, 9, 7, 9, 5, 3, 4, 0, 6, 2, 5, 2, 3, 6, 2, 1, 8, 1, 8, 7, 1, 7, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.743971193350374744686559607585650...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 106.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 98; terms = 500; P[n_] := PrimeZetaP[n] - 1/2^n; LR = Join[{0, 0}, LinearRecurrence[{0, 1, 2}, {-2, -6, -2}, terms + 10]]; r[n_Integer] := LR[[n]];  (5 Pi^2/48)*Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    (5 * Pi^2 / 48) * prodeulerrat(1 - (p+2)/p^3, 1, 3) \\ Amiram Eldar, Mar 16 2021

A065478 Decimal expansion of Product_{p prime} (1 - p/(p^3-1)).

Original entry on oeis.org

5, 7, 5, 9, 5, 9, 9, 6, 8, 8, 9, 2, 9, 4, 5, 4, 3, 9, 6, 4, 3, 1, 6, 3, 3, 7, 5, 4, 9, 2, 4, 9, 6, 6, 9, 2, 5, 0, 6, 5, 1, 3, 9, 6, 7, 1, 7, 6, 4, 9, 2, 3, 6, 3, 6, 0, 0, 6, 4, 0, 7, 9, 8, 6, 6, 5, 3, 7, 2, 5, 5, 1, 6, 9, 8, 8, 6, 8, 5, 2, 8, 4, 3, 6, 4, 0, 9, 8, 7, 2, 0, 9, 1, 7, 2, 6, 1, 8
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.57595996889294543964316337549249669...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 106.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 16.

Crossrefs

Cf. A078079.

Programs

  • Mathematica
    $MaxExtraPrecision = 100; m0 = 200; dm = 200; digits = 101; Clear[f]; f[m_] := f[m] = (slog = Normal[Series[Log[1 - p/(p^3 - 1)], {p, Infinity, m}]]; Exp[slog] /. Power[p, n_] -> PrimeZetaP[-n] // N[#, digits+10]&); f[m = m0]; Print[m, " ", f[m]]; f[m = m + dm]; While[Print[m, " ", f[m]]; RealDigits[f[m], 10, digits+5] != RealDigits[f[m - dm], 10, digits+5], m = m + dm];RealDigits[f[m], 10, digits] // First (* Jean-François Alcover, Sep 15 2015 *)
  • PARI
    prodeulerrat(1 - p/(p^3-1)) \\ Amiram Eldar, Mar 17 2021

A114947 Number of monic irreducible polynomials over GF(5) of degree <= n.

Original entry on oeis.org

5, 15, 55, 205, 829, 3409, 14569, 63319, 280319, 1256567, 5695487, 26039187, 119939427, 555899247, 2590404239, 12127122989, 57005914349, 268933430849, 1272801132329, 6041172226049, 28747703565329, 137119782755669, 655421041672109, 3138947897124609
Offset: 1

Views

Author

Gary L Mullen (mullen(AT)math.psu.edu) and Ken Hicks, Jan 06 2006

Keywords

Crossrefs

Partial sums of A001692. 5th column of A143328. - Alois P. Heinz, Sep 23 2008

Programs

  • Maple
    with(numtheory):
    b:= n-> add(mobius(d) *5^(n/d)/n, d=divisors(n)):
    a:= n-> add(b(k), k=1..n):
    seq(a(n), n=1..30); # Alois P. Heinz, Sep 23 2008
  • Mathematica
    f[n_] := DivisorSum[n, MoebiusMu[#] * 5^(n/#) &] / n; Accumulate[Array[f, 30]] (* Amiram Eldar, Aug 24 2023 *)
  • PARI
    a(n)=sum(m=1, n, 1/m* sumdiv(m, d, moebius(d)*5^(m/d) ) ); /* Joerg Arndt, Jul 04 2011 */

Formula

a(n) ~ 5^(n+1) / (4*n). - Vaclav Kotesovec, Sep 05 2014

Extensions

More terms from Alois P. Heinz, Sep 23 2008

A059863 a(n) = Product_{i=3..n} (prime(i)-4).

Original entry on oeis.org

1, 1, 1, 3, 21, 189, 2457, 36855, 700245, 17506125, 472665375, 15597957375, 577124422875, 22507852492125, 967837657161375, 47424045200907375, 2608322486049905625, 148674381704844620625, 9366486047405211099375, 627554565176149143658125, 43301264997154290912410625
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

References

  • See A059862 for references.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.

Crossrefs

Programs

  • PARI
    a(n) = prod(i=3, n, prime(i)-4); \\ Michel Marcus, Aug 25 2019

Extensions

More terms from Michel Marcus, Aug 25 2019

A059864 a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.

Original entry on oeis.org

1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Such products arise in Hardy-Littlewood prime k-tuplet conjectural formulas.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
    
  • SageMath
    def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
    [A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023

A065492 Exponents in expansion of constant A065480 as a product zeta(n)^(-a(n)).

Original entry on oeis.org

0, 1, -1, 2, -4, 8, -14, 25, -48, 92, -168, 310, -590, 1117, -2092, 3945, -7500, 14264, -27102, 51627, -98694, 188934, -361936, 694565, -1335466, 2570965, -4954744, 9561045, -18473140, 35730392, -69176558, 134063535, -260062168, 504918960
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Inverse Euler transform of A077925 shifted by two places: 1, 0, 1, -1, 3, -5,... [From R. J. Mathar, Jul 26 2010]

Crossrefs

Cf. A065480.

Programs

  • Mathematica
    nmax = 40; s = {}; For[j = 1, j <= nmax, j++, AppendTo[s, j*(1 - (-2)^(j - 1))/3 - Sum[s[[d]]*(1 - (-2)^(j - d - 1))/3, {d, j - 1}]]]; Table[Sum[If[Divisible[j, d], MoebiusMu[j/d], 0]*s[[d]], {d, 1, j}]/j, {j, nmax}] (* Vaclav Kotesovec, Jun 13 2020 *)

Formula

a(n) ~ -(-1)^n * 2^(n+1) / n. - Vaclav Kotesovec, Jun 13 2020

Extensions

More terms from R. J. Mathar, Jul 26 2010
Previous Showing 51-60 of 68 results. Next