cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A060944 a(n) = n!^2 * Sum_{k=1..n} Sum_{j=1..k} 1/j^2.

Original entry on oeis.org

1, 9, 130, 2900, 93576, 4141872, 241353792, 17929776384, 1655071418880, 185914776960000, 24978180045312000, 3955930130221056000, 729464836964806656000, 154952762244805582848000, 37566943754471090749440000, 10310706109241121091092480000
Offset: 1

Views

Author

Leroy Quet, May 07 2001

Keywords

Comments

Sum of generalized harmonic numbers squared multiplied by (n!)^2. agenh(n) = Sum_{k=1..n} HarmonicNumber(k, 2), where HarmonicNumber(n, j) = Sum_{k = 1..n} 1/k^j. - Alexander Adamchuk, Oct 27 2004

Examples

			a(3) = 6^2 *(1 + (1 + 1/2^2) + (1 + 1/2^2 + 1/3^2)) = 130.
		

Crossrefs

Programs

  • Magma
    [(Factorial(n))^2*(&+[(1+j)/(n-j)^2: j in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Apr 09 2021
    
  • Maple
    A060944:= n-> (n!)^2*add((1+j)/(n-j)^2, j=0..n-1); seq(A060944(n), n=1..15); # G. C. Greubel, Apr 09 2021
  • Mathematica
    Table[(n!)^2*Sum[(k+1)/(n-k)^2, {k, 0, n-1}], {n, 1, 10}]
  • PARI
    a(n)={n!^2 * sum(k=1, n, sum(j=1, k, 1/j^2))} \\ Harry J. Smith, Jul 15 2009
    
  • Sage
    [(factorial(n))^2*sum((1+j)/(n-j)^2 for j in (0..n-1)) for n in (1..15)] # G. C. Greubel, Apr 09 2021

Formula

From Alexander Adamchuk, Oct 27 2004: (Start)
a(n) = (n!)^2 * Sum_{k=0..n-1} (k+1)/(n-k)^2.
a(n) = (n!)^2 * Sum_{k=1..n} HarmonicNumber(k, 2), where HarmonicNumber(k, 2) = A007406(k) / A007407(k). (End)
Sum_{n>=1} a(n) * x^n / (n!)^2 = polylog(2,x) / (1 - x)^2. - Ilya Gutkovskiy, Jul 15 2020

A081525 Erroneous version of A027612.

Original entry on oeis.org

1, 5, 13, 77, 87, 223, 481, 4609, 4861, 55991, 58301
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001705.

Formula

a(n) = A001705(n) / gcd(A001705(n), n!). Note: A001705 starts with n=0. - Martin Fuller, Jan 03 2006

Extensions

Corrected and extended by Martin Fuller, Jan 03 2006

A081526 Erroneous version of A027611.

Original entry on oeis.org

1, 2, 3, 12, 10, 20, 35, 280, 252, 2520, 2310
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001705.

Formula

n! / gcd(A001705(n), n!). Note: A001705 starts with n=0 - Martin Fuller, Jan 03 2006

Extensions

Corrected and extended by Martin Fuller, Jan 03 2006

A122057 a(n) = (n+1)! * (H(n+1) - H(2)), where H(n) are the harmonic numbers.

Original entry on oeis.org

0, 2, 14, 94, 684, 5508, 49104, 482256, 5185440, 60668640, 767940480, 10462227840, 152698210560, 2377651449600, 39350097561600, 689874448435200, 12773427499929600, 249097496204390400, 5103595024496640000, 109608397522606080000, 2462475687669043200000
Offset: 1

Views

Author

Roger L. Bagula, Sep 14 2006

Keywords

Comments

Former title (corrected): A Legendre-based recurrence sequence. Let b(n) = ((4*n+2)*x -(2*n+1) )/(n+1)*b(n-1) - (n/(n+1))*b(n-2), where x=1, then a(n) = (n+1)!*b(n)/6. - G. C. Greubel, Oct 03 2019

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964, 9th Printing (1970), pp. 782

Crossrefs

Programs

  • GAP
    List([1..30], n-> Factorial(n+1)*(Sum([1..n+1], k-> 1/k) - 3/2) ); # G. C. Greubel, Oct 03 2019
  • Magma
    [Factorial(n+1)*(HarmonicNumber(n+1) - 3/2): n in [1..30]]; // G. C. Greubel, Oct 03 2019
    
  • Maple
    a:=n-> (n+1)!*add(1/k,k=3..n+1): seq(a(n),n=1..30); # Gary Detlefs, Jul 15 2010
  • Mathematica
    x=1; b[1]:=0; b[2]:=2; b[n_]:= b[n]= ((-2*n-1) +(4*n+2)*x)/(n+1)*b[n-1] - (n/(n+1))*b[n-2]; Table[b[n]*(n+1)!/6, {n,30}]
    Table[(n+1)!*(HarmonicNumber[n+1] - 3/2), {n,30}] (* G. C. Greubel, Oct 03 2019 *)
  • PARI
    vector(30, n, (n+1)!*(sum(k=1,n+1, 1/k) - 3/2) ) \\ G. C. Greubel, Oct 03 2019
    
  • Sage
    [factorial(n+1)*(harmonic_number(n+1) - 3/2) for n in (1..30)] # G. C. Greubel, Oct 03 2019
    

Formula

Let b(n) = ((-2*n-1) +(4*n+2)*x)/(n+1)*b(n-1) - (n/(n+1))*b(n-2) with x=1, then a(n) = b(n)*(n+1)!/6.
a(n) = (n+1)! * Sum_{k=3..n+1} 1/k. - Gary Detlefs, Jul 15 2010
a(n) = 2*A001711(n-2) for n >= 2. - Pontus von Brömssen, Jan 04 2025

Extensions

If all terms are really negative, sequence should probably be negated. - N. J. A. Sloane, Oct 01 2006
Negated terms and edited by G. C. Greubel, Oct 03 2019

A123369 Number of prime divisors of n-th Conway and Guy second-order harmonic number (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 2, 2, 3, 2, 4, 3, 1, 2, 5, 3, 3, 2, 2, 1, 3, 3, 3, 1, 1, 2, 2, 2, 5, 2, 2, 2, 5, 1, 3, 4, 4, 3, 3, 3, 5, 4, 3, 3, 3, 2, 2, 6, 2, 3, 4, 2, 4, 2, 3, 3, 2, 4, 4, 4, 3, 3, 3, 3, 4, 2, 3, 4, 2, 2, 5, 3, 2, 2, 4, 4, 2, 2, 1, 6, 4, 2, 5, 3, 5, 1, 2, 2, 3, 4, 2, 3, 3, 3, 5
Offset: 1

Views

Author

Jonathan Vos Post, Nov 09 2006

Keywords

Comments

We must include multiplicity in the definition due to terms such as a(16) = 29889983 = 19 * 31^2 * 1637. The primes are those n for which a(n) = Omega(A027612(n))= 1, namely a(2) = 5, a(3) = 13, a(6) = 223, a(9) = 4861, a(18) = 197698279, a(25) = 25472027467. The semiprimes are those for which a(n) = 2, such as when n = 4, 5, 7, 8, 11, 12, 13, 15, 19, 23, 24. The 3-almost primes are those for which a(n) = 3, as with the "3-brilliant" a(10) = 55991 = 13 * 59 * 73, a(14), a(17), a(21), a(22), a(26).

Examples

			a(20) = 5 because A027612(20) = 41054655 = 3 * 5 * 23 * 127 * 937 has 5 prime factors.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, pp. 143 and 258-259.

Crossrefs

Cf. A001222 Number of prime divisors of n (counted with multiplicity), A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n, A027611, A001008, A002805, A001705, A006675, A093418.

Programs

  • Mathematica
    PrimeOmega[Numerator[Table[Sum[k/(n - k + 1), {k, 1, n}], {n, 1, 50}]]] (* G. C. Greubel, Jan 22 2017 *)

Formula

a(n) = A001222(A027612(n)) = Omega(Numerator of 1/n + 2/(n-1) + 3/(n-2) +...+ (n-1)/2 + n).

A140713 Triangle read by rows: T(n,k) is the number of white corners of rank k in all the permutations of {1,2,...,n} (n>=2, 0<=k<=n-2; for definitions see the Eriksson-Linusson references).

Original entry on oeis.org

1, 5, 1, 26, 9, 2, 154, 70, 26, 6, 1044, 562, 268, 102, 24, 8028, 4860, 2700, 1308, 504, 120, 69264, 45756, 28224, 15828, 7728, 3000, 720
Offset: 2

Views

Author

Emeric Deutsch, May 29 2008

Keywords

Comments

Sum of row n is A140712(n).
T(n,0) = A001705(n-1).
T(n,n-2) = (n-2)!.

Examples

			Triangle starts:
1;
5,1;
26,9,2;
154,70,26,6;
1044,562,268,102,24;
		

References

  • K. Eriksson and S. Linusson. Combinatorics of Fulton's essential set. Duke Mathematical Journal 85(1):61-76, 1996.

Crossrefs

A376582 Triangle of generalized Stirling numbers.

Original entry on oeis.org

1, 5, 1, 26, 7, 1, 154, 47, 9, 1, 1044, 342, 74, 11, 1, 8028, 2754, 638, 107, 13, 1, 69264, 24552, 5944, 1066, 146, 15, 1, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 6999840, 2592720, 662640, 127860, 19524, 2414, 242, 19, 1, 80627040, 30334320, 7893840, 1557660, 245004, 31594, 3382, 299, 21, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
[0]       1;
[1]       5,       1;
[2]      26,       7,       1;
[3]     154,      47,       9,        1;
[4]    1044,     342,      74,       11,       1;
[5]    8028,    2754,     638,      107,      13,     1;
[6]   69264,   24552,    5944,     1066,     146,    15,    1;
[7]  663696,  241128,   60216,    11274,    1650,   191,   17,    1;
		

Crossrefs

Column k: A001705 (k=0), A001711 (k=1), A001716 (k=2), A001721 (k=3), A051524 (k=4), A051545 (k=5), A051560 (k=6).
Cf. A094587 and A173333 for m=0.

Programs

  • Maple
    T:=(m,n,k)->add(Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!,i=0..n-k): m:=1: seq(seq(T(m,n,k), k=0..n), n=0..10);

Formula

T(m,n,k) = Sum_{i=0..n-k} Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!, for m=1.

A292717 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. -log(1 - x)/(1 - x)^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 11, 6, 0, 1, 7, 26, 50, 24, 0, 1, 9, 47, 154, 274, 120, 0, 1, 11, 74, 342, 1044, 1764, 720, 0, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 0, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 0, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) = x/1! + (2*k + 1)*x^2/2! + (3*k^2 + 6*k + 2)*x^3/3! + 2*(2*k^3 + 9*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
   0,    0,     0,     0,     0,      0,  ...
   1,    1,     1,     1,     1,      1,  ...
   1,    3,     5,     7,     9,     11,  ...
   2,   11,    26,    47,    74,    107,  ...
   6,   50,   154,   342,   638,   1066,  ...
  24,  274,  1044,  2754,  5944,  11274,  ...
		

Crossrefs

Columns k=0..11 give A104150, A000254, A001705, A001711 (with offset 1), A001716 (with offset 1), A001721 (with offset 1), A051524, A051545, A051560, A051562, A051564, A203147.
Rows n=0..3 give A000004, A000012, A005408, A080663 (with offset 0).
Main diagonal gives A058806.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[-Log[1 - x]/(1 - x)^k, {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: -log(1 - x)/(1 - x)^k.

A300910 Expansion of e.g.f. 1/(1 - x)^(x/(1 - x)^2).

Original entry on oeis.org

1, 0, 2, 15, 116, 1070, 11754, 149436, 2145296, 34193736, 598061160, 11377384920, 233732130312, 5153974126704, 121354505626704, 3037419444974040, 80497938647953920, 2251124265581428800, 66225476356207660224, 2044005966844402035456, 66025689709572751040640, 2227221130525199246067840, 78301158190416233445985920
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 15 2018

Keywords

Comments

Exponential transform of A006675.

Examples

			1/(1 - x)^(x/(1 - x)^2) = 1 + 2*x^2/2! + 15*x^3/3! + 116*x^4/4! + 1070*x^5/5! + 11754*x^6/6! + 149436*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1-x)^(x/(1-x)^2),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x)^(x/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[k k! (HarmonicNumber[k] - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: A(x) = exp(B(x)*C(x)), where B(x) is the g.f. of the sequence {0, 1, 2, 3, 4, 5, ...} and C(x) is the g.f. of the sequence {0, 1, 1/2, 1/3, 1/4, 1/5, ...}.
a(0) = 1; a(n) = Sum_{k=1..n} k*k!*(H(k)-1)*binomial(n-1,k-1)*a(n-k), where H(k) is the k-th harmonic number.

A336746 Triangle read by rows: T(n,k) = (n-k-1+H(k+1))*((k+1)!) for 0 <= k <= n where H(k+1) = Sum_{i=0..k} 1/(i+1) for k >= 0.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 3, 5, 11, 26, 4, 7, 17, 50, 154, 5, 9, 23, 74, 274, 1044, 6, 11, 29, 98, 394, 1764, 8028, 7, 13, 35, 122, 514, 2484, 13068, 69264, 8, 15, 41, 146, 634, 3204, 18108, 109584, 663696, 9, 17, 47, 170, 754, 3924, 23148, 149904, 1026576, 6999840
Offset: 0

Views

Author

Werner Schulte, Aug 02 2020

Keywords

Examples

			The triangle starts:
n\k :  0   1   2    3    4     5      6       7        8        9
=================================================================
  0 :  0
  1 :  1   1
  2 :  2   3   5
  3 :  3   5  11   26
  4 :  4   7  17   50  154
  5 :  5   9  23   74  274  1044
  6 :  6  11  29   98  394  1764   8028
  7 :  7  13  35  122  514  2484  13068   69264
  8 :  8  15  41  146  634  3204  18108  109584   663696
  9 :  9  17  47  170  754  3924  23148  149904  1026576  6999840
...
		

Crossrefs

Cf. A001477 (column 0), A005408 (column 1), A016969 (column 2), A001705 (main diagonal), A000254 (1st subdiagonal), A000774 (2nd subdiagonal).

Formula

T(n,k) = T(n,k-1) + k * T(n-1,k-1) for 0 < k <= n with initial values T(n,0) = n for n >= 0 and T(i,j) = 0 if j < 0 or j > i.
T(n,k) = k! + T(n-1,k-1) * (k+1) for 0 < k <= n.
T(n,k) = (k+1)! + T(n-1,k) for 0 <= k < n.
E.g.f. of main diagonal (case n=0) and n-th subdiagonal (n>0): Sum_{k>=0} T(n+k,k) * x^k / k! = (n - log(1-x)) / (1-x)^2 for n >= 0.
G.f. of column k>=0: Sum_{n>=k} T(n,k) * y^n = (T(k,k) * y^k + ((k+1)! - T(k,k)) * y^(k+1)) / (1-y)^2.
G.f.: Sum_{n>=0, k=0..n} T(n,k)*x^k*y^n/k! = (y - (1-y) * log(1-x*y)) / ((1-y)^2 * (1-x*y)^2).
Previous Showing 41-50 of 50 results.