cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A084544 Alternate number system in base 4.

Original entry on oeis.org

1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44, 111, 112, 113, 114, 121, 122, 123, 124, 131, 132, 133, 134, 141, 142, 143, 144, 211, 212, 213, 214, 221, 222, 223, 224, 231, 232, 233, 234, 241, 242, 243, 244, 311, 312, 313, 314, 321
Offset: 1

Views

Author

Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003

Keywords

Examples

			From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(100)  = 1144.
a(10^3) = 33214.
a(10^4) = 2123434.
a(10^5) = 114122134.
a(10^6) = 3243414334.
a(10^7) = 211421121334.
a(10^8) = 11331131343334.
a(10^9) = 323212224213334. (End)
		

Crossrefs

Programs

  • Python
    def A084544(n):
        m = (3*n+1).bit_length()-1>>1
        return int(''.join((str(((3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3)+1) for j in range(m)))) # Chai Wah Wu, Feb 08 2023

Formula

From Hieronymus Fischer, Jun 06 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1..4.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 4)*10^j,
where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Special values:
a(k*(4^n-1)/3) = k*(10^n-1)/9, k = 1,2,3,4.
a((7*4^n-4)/3) = (13*10^n-4)/9 = 10^n + 4*(10^n-1)/9.
a((4^n-1)/3 - 1) = 4*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k>0.
a(n) > (4/10)*(10^log_4(3*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_4(3*n) = 2/45, for n --> infinity.
lim sup a(n)/10^log_4(3*n) = 1/9, for n --> infinity.
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1 - 5z(j)^4 + 4z(j)^5)/((1-z(j))(1-z(j)^4)), where z(j) = x^4^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1-5(x^4^j)^4 + 4(x^4^j)^5)*x^4^j*f_j(x)/(1-x^4^j), where f_j(x) = 10^j*x^((4^j-1)/3)/(1-(x^4^j)^4). The f_j obey the recurrence f_0(x) = 1/(1-x^4), f_(j+1)(x) = 10x*f_j(x^4).
Also: g(x) = (1/(1-x))* (h_(4,0)(x) + h_(4,1)(x) + h_(4,2)(x) + h_(4,3)(x) - 4*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3) * (x^4^j)^k/(1-(x^4^j)^4).
(End)
a(n) = A045926(n) / 2. - Reinhard Zumkeller, Jan 01 2013

Extensions

Offset set to 1 according to A007931, A007932 by Hieronymus Fischer, Jun 06 2012

A084545 Alternate number system in base 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45, 51, 52, 53, 54, 55, 111, 112, 113, 114, 115, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135, 141, 142, 143, 144, 145, 151, 152, 153, 154, 155, 211, 212, 213, 214, 215, 221, 222
Offset: 1

Views

Author

Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003

Keywords

Examples

			From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(100)  = 345.
a(10^3) = 12445.
a(10^4) = 254445.
a(10^5) = 11144445.
a(10^6) = 223444445.
a(10^7) = 4524444445.
a(10^8) = 145544444445.
a(10^9) = 3521444444445. (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my (w=5); while (n>w, n -= w; w *= 5); my (d=digits(w+n-1, 5)); d[1] = 0; fromdigits(d) + (10^(#d-1)-1)/9 \\ Rémy Sigrist, Dec 04 2019

Formula

From Hieronymus Fischer, Jun 06 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1..5.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 5)*10^j, where m = floor(log_5(4*n+1)), b(j) = floor((4*n+1-5^m)/(4*5^j)).
a(k*(5^n-1)/4) = k*(10^n-1)/9, for k = 1,2,3,4,5.
a((9*5^n-5)/4) = (14*10^n-5)/9 = 10^n + 5*(10^n-1)/9.
a((5^n-1)/4 - 1) = 5*(10^(n-1)-1)/9, n>1.
a(n) <= (10^log_5(4*n+1)-1)/9, equality holds for n=(5^k-1)/4, k>0.
a(n) > (5/10)*(10^log_5(4*n+1)-1)/9, n>0.
lim inf a(n)/10^log_5(4*n) = 1/18, for n --> infinity.
lim sup a(n)/10^log_5(4*n) = 1/9, for n --> infinity.
G.f.: g(x) = (x^(1/4)*(1-x))^(-1) sum_{j>=0} 10^j*z(j)^(5/4)*(1 - 6z(j)^5 + 5z(j)^6)/((1-z(j))(1-z(j)^5)), where z(j) = x^5^j.
Also: g(x) = (1/(1-x)) sum_{j>=0} (1-6(x^5^j)^5+5(x^5^j)^6)*x^5^j*f_j(x)/(1-x^5^j), where f_j(x) = 10^j*x^((5^j-1)/4)/(1-(x^5^j)^5). The f_j obey the recurrence f_0(x) = 1/(1-x^5), f_(j+1)(x) = 10x*f_j(x^5).
Also: g(x) = 1/(1-x))*(h_(5,0)(x) + h_(5,1)(x) + h_(5,2)(x) + h_(4,1)(x) + h_(5,4)(x) - 5*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*x^((5^(j+1)-1)/4) * (x^5^j)^k/(1-(x^5^j)^5).
(End)

Extensions

Offset set to 1 according to A007931, A007932 and more terms added by Hieronymus Fischer, Jun 06 2012

A029581 Numbers in which all digits are composite.

Original entry on oeis.org

4, 6, 8, 9, 44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 89, 94, 96, 98, 99, 444, 446, 448, 449, 464, 466, 468, 469, 484, 486, 488, 489, 494, 496, 498, 499, 644, 646, 648, 649, 664, 666, 668, 669, 684, 686, 688, 689, 694, 696, 698, 699, 844, 846, 848
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=4,6,8,9 for k=1..4. - Hieronymus Fischer, May 30 2012

Examples

			From _Hieronymus Fischer_, May 30 2012: (Start)
a(1000) = 88649.
a(10^4) = 6468989
a(10^5) = 449466489. (End)
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | Set(Intseq(n)) subset [4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
  • Mathematica
    Table[FromDigits/@Tuples[{4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)

Formula

From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} (2*b(j) mod 8 + 4 + floor(b(j)/4) - floor((b(j)+1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Also: a(n) = Sum_{j=0..m-1} (A010877(2*b(j)) + 4 + A002265(b(j)) - A002265(b(j)+1))*10^j.
Special values:
a(1*(4^n-1)/3) = 4*(10^n-1)/9.
a(2*(4^n-1)/3) = 2*(10^n-1)/3.
a(3*(4^n-1)/3) = 8*(10^n-1)/9.
a(4*(4^n-1)/3) = 10^n-1.
a(n) < 4*(10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k > 0.
a(n) < 4*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > 2*A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = 1/10*10^log_4(3) = 0.62127870, for n --> inf.
lim sup a(n)/10^log_4(n) = 4/9*10^log_4(3) = 2.756123868970, for n --> inf.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(4 + 6z(j) + 8*z(j)^2 + 9*z(j)^3)/(1-z(j)^4), where z(j) = x^4^j.
Also: g(x) = (1/(1-x))*(4*h_(4,0)(x) + 2*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*(x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.039691381254753739202528087006945643166147087095114911673083135126969046250... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

Offset corrected by Arkadiusz Wesolowski, Oct 03 2011

A250256 Least positive integer whose decimal digits divide the plane into n regions (A249572 variant).

Original entry on oeis.org

1, 6, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
Offset: 1

Views

Author

Rick L. Shepherd, Nov 15 2014

Keywords

Comments

Equivalently, with offset 0, least positive integer with n holes in its decimal digits. Leading zeros are not permitted. Variation of A249572 with the numeral "4" considered open at the top, as it is often handwritten. See also the comments in A249572.
For n > 2, a(n) + a(n+1) divides the plane into 2 regions. For n > 1, a(2n) - a(2n-1) divides the plane into n+1 regions. For n >= 1, a(2n+1) - a(2n) divides the plane into n regions. - Ivan N. Ianakiev, Feb 23 2015

Examples

			The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller positive integer does this, so a(4) = 68.
		

Crossrefs

Programs

  • Magma
    I:=[1,6,8,68]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
  • Mathematica
    Join[{1, 6, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)

Formula

a(n) = 10*a(n-2) + 8 for n >= 4.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: x*(10*x^3 - 8*x^2 + 5*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
E.g.f.: (9 + 45*x - 40*cosh(x) + 31*cosh(sqrt(10)*x) - 40*sinh(x) + 4*sqrt(10)*sinh(sqrt(10)*x))/45. - Stefano Spezia, Aug 11 2025

A085557 Numbers that have more prime digits than nonprime digits.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232
Offset: 1

Views

Author

Jason Earls, Jul 04 2003

Keywords

Comments

Begins to differ from A046034 at the 21st term (which is the first 3-digit term).

Examples

			133 is in the sequence as the prime digits are 3 and 3 (those are two digits; counted with multiplicity) and one nonprime digit 1 and so there are more prime digits than nonprime digits. - _David A. Corneth_, Sep 06 2020
		

Crossrefs

Programs

  • PARI
    is(n) = my(d = digits(n), c = 0); for(i = 1, #d, if(isprime(d[i]), c++)); c<<1 > #d \\ David A. Corneth, Sep 06 2020
    
  • Python
    from itertools import count, islice
    def A085557_gen(startvalue=1): # generator of terms
        return filter(lambda n:len(s:=str(n))<(sum(1 for d in s if d in {'2','3','5','7'})<<1),count(max(startvalue,1)))
    A085557_list = list(islice(A085557_gen(),20)) # Chai Wah Wu, Feb 08 2023

A107625 Every digit of prime and its index contains a loop (only digits 0,4,6,8,9 in prime and its index).

Original entry on oeis.org

409, 4409, 4999, 6869, 44699, 44909, 46499, 48409, 64849, 66889, 68449, 68909, 86969, 89689, 98869, 98899, 480499, 488689, 490499, 609809, 806609, 806999, 866969, 868669, 868849, 869489, 869849, 869899, 869909, 880949, 6440809, 6440999, 6488969, 6489449
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding indices in A107624. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[p=Prime[n]], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[p]], {n, 10000}]
    Module[{c={0,4,6,8,9}},Select[Prime/@(Rest[FromDigits/@Tuples[c,6]]), SubsetQ[ c,IntegerDigits[#]]&]] (* Harvey P. Dale, Sep 03 2015 *)
  • PARI
    is_a001744(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0
    my(i=1); forprime(p=1, 65e5, if(is_a001744(p) && is_a001744(i), print1(p, ", ")); i++) \\ Felix Fröhlich, Sep 09 2019

Extensions

More terms from Harvey P. Dale, Sep 03 2015

A078240 a(n) = smallest multiple of n using only composite digits (0,4,6,8,9).

Original entry on oeis.org

4, 4, 6, 4, 40, 6, 49, 8, 9, 40, 44, 48, 468, 84, 60, 48, 68, 90, 494, 40, 84, 44, 46, 48, 400, 468, 486, 84, 406, 60, 496, 64, 66, 68, 490, 468, 444, 494, 468, 40, 984, 84, 86, 44, 90, 46, 94, 48, 49, 400, 408, 468, 689, 486, 440, 448, 684, 406, 649, 60
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n)={my(S=Set([1,2,3,5,7])); forstep(m=n, oo, n, my(d=digits(m)); if(#select(t->setsearch(S,t), d)==0, return(m)))} \\ Andrew Howroyd, Sep 17 2024

Extensions

Corrected and extended by Andrew Howroyd, Sep 17 2024

A107624 Numbers n such that every digit of n and n-th prime contains a loop (only digits 0,4,6,8,9 in n and n-th prime).

Original entry on oeis.org

80, 600, 669, 884, 4646, 4666, 4806, 4980, 6480, 6666, 6806, 6849, 8448, 8688, 9489, 9494, 40046, 40664, 40804, 49848, 64444, 64466, 68864, 68994, 69008, 69060, 69084, 69089, 69090, 69899, 440986, 440999, 444049, 444080, 464446, 464496, 464499, 466466, 466844
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding primes in A107625. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[Prime[n]], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[n]], {n, 10000}]
  • PARI
    is_a001744(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0
    is(n) = is_a001744(n) && is_a001744(prime(n)) \\ Felix Fröhlich, Sep 09 2019

Extensions

More terms from Felix Fröhlich, Sep 09 2019

A107626 Numbers n such that every digit of both n and n^2 contains a loop (only digits 0,4,6,8,9 in n and n^2).

Original entry on oeis.org

8, 64, 80, 98, 640, 664, 800, 898, 980, 998, 6400, 6640, 6664, 8000, 8980, 8998, 9800, 9980, 9998, 64000, 66400, 66640, 66664, 80000, 89800, 89980, 89998, 98000, 98998, 99800, 99980, 99998, 640000, 664000, 664064, 666400, 666640, 666664, 684908, 800000, 806008
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding squares in A107627. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[n^2], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[n]], {n, 10000}]
  • PARI
    is_a001744(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0
    is(n) = is_a001744(n) && is_a001744(n^2) \\ Felix Fröhlich, Sep 09 2019

Extensions

More terms from Felix Fröhlich, Sep 09 2019

A107627 Numbers n such that every digit of n and sqrt(n) contains a loop (only digits 0,4,6,8,9 in n and sqrt(n)).

Original entry on oeis.org

64, 4096, 6400, 9604, 409600, 440896, 640000, 806404, 960400, 996004, 40960000, 44089600, 44408896, 64000000, 80640400, 80964004, 96040000, 99600400, 99960004
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding square roots in A107626. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[n^2], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[n^2]], {n, 10000}]
    With[{c={0,4,6,8,9}},#^2&/@Select[FromDigits/@Tuples[c,4],SubsetQ[c,IntegerDigits[ #^2]]&]] (* Harvey P. Dale, Oct 01 2023 *)
Previous Showing 11-20 of 25 results. Next