cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A272470 7 times the primes.

Original entry on oeis.org

14, 21, 35, 49, 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 371, 413, 427, 469, 497, 511, 553, 581, 623, 679, 707, 721, 749, 763, 791, 889, 917, 959, 973, 1043, 1057, 1099, 1141, 1169, 1211, 1253, 1267, 1337, 1351, 1379, 1393, 1477, 1561, 1589, 1603, 1631, 1673, 1687, 1757, 1799, 1841, 1883, 1897
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2016

Keywords

Crossrefs

Column 4 of A272214.
k times the primes (k=1..6): A000040, A100484, A001748, A001749, A001750, A138636.

Programs

  • Mathematica
    7 Prime@ Range@ 58 (* Michael De Vlieger, May 01 2016 *)
  • PARI
    a(n) = 7*prime(n); \\ Michel Marcus, May 01 2016
    
  • Python
    from sympy import prime
    for n in range(1,1000):print(7*prime(n),end=", ") # Soumil Mandal, May 08 2016

Formula

a(n) = 7*prime(n) = 7*A000040(n).

A306771 Numbers m such that m = i + j = i * k and phi(m) = phi(i) + phi(j) = phi(i) * phi(k) for some i, j, k, where phi is the Euler totient function A000010.

Original entry on oeis.org

3, 15, 21, 33, 39, 51, 57, 69, 75, 87, 93, 105, 111, 123, 129, 141, 147, 159, 165, 177, 183, 195, 201, 213, 219, 231, 237, 249, 255, 267, 273, 285, 291, 303, 309, 321, 327, 339, 345, 357, 363, 375, 381, 393, 399, 411, 417, 429, 435, 447, 453, 465, 471, 483, 489
Offset: 1

Views

Author

Michel Lagneau, Mar 09 2019

Keywords

Comments

The 55 terms given in the data section are consistent with a definition "numbers congruent to 3 or 15 mod 18". - Peter Munn, May 12 2020
The observation above is true for the first 10^4 terms. - Amiram Eldar, Dec 08 2020
The observation above is true for every term; see link. - Flávio V. Fernandes, Apr 18 2022
A001748 \ {6, 9} is a subsequence because, for p prime >= 5, 3 * p = p + 2p = p * 3 and phi(3p) = phi(p) + phi(2p) = phi(p) * phi(3) = 2 * (p-1). - Bernard Schott, May 13 2022

Examples

			33 is in the sequence because:
phi(33) = phi(11 + 22) = phi(11) + phi(22) = 10 + 10 = 20, and
phi(33) = phi(3 * 11) = phi(3) * phi(11) = 2 * 10 = 20.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 500 do:
    ii:=0:
      for i from 1 to trunc(n/2) while(ii=0) do:
       if phi(i)+ phi(n-i)= phi(n) and n/i = floor(n/i)
          and phi(i)*phi(n/i)=phi(n)
          then
          ii:=1:printf(`%d, `,n):
          else
       fi:
      od:
    od:
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {3, 15, 21}, 100] (* Paolo Xausa, Mar 07 2025 *)
  • PARI
    isok(m) = {my(phim = eulerphi(m)); for (i=1, m\2, if ((eulerphi(i) + eulerphi(m-i) == phim) && !frac(m/i) && (eulerphi(m/i)*eulerphi(i) == phim), return (1)););} \\ Michel Marcus, Mar 09 2019

Formula

From Chai Wah Wu, Mar 07 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
G.f.: x*(3*x^2 + 12*x + 3)/((x - 1)^2*(x + 1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) (A381671). - Amiram Eldar, Mar 08 2025

Extensions

Incorrect comment deleted by Peter Munn, May 12 2020
Name corrected by Flávio V. Fernandes, Aug 26 2021 and Peter Munn, Sep 03 2021

A322366 Number of integers k in {0,1,...,n} such that k identical test tubes can be balanced in a centrifuge with n equally spaced holes.

Original entry on oeis.org

1, 0, 2, 2, 3, 2, 5, 2, 5, 4, 7, 2, 11, 2, 9, 8, 9, 2, 17, 2, 17, 10, 13, 2, 23, 6, 15, 10, 23, 2, 29, 2, 17, 14, 19, 12, 35, 2, 21, 16, 37, 2, 41, 2, 35, 38, 25, 2, 47, 8, 47, 20, 41, 2, 53, 16, 51, 22, 31, 2, 59, 2, 33, 52, 33, 18, 65, 2, 53, 26, 67, 2, 71, 2, 39, 68, 59, 18, 77, 2, 77, 28, 43, 2, 83, 22, 45, 32, 79
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2018

Keywords

Comments

Numbers where a(n) + A000010(n) != n + 1: A102467. - Robert G. Wilson v, Aug 23 2021

Examples

			a(6) = |{0,2,3,4,6}| = 5.
a(9) = |{0,3,6,9}| = 4.
a(10) = |{0,2,4,5,6,8,10}| = 7.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local f, b; f, b:=
           map(i-> i[1], ifactors(n)[2]),
           proc(m, i) option remember; m=0 or i>0 and
            (b(m, i-1) or f[i]<=m and b(m-f[i], i))
           end; forget(b); (t-> add(
          `if`(b(j, t) and b(n-j, t), 1, 0), j=0..n))(nops(f))
        end:
    seq(a(n), n=0..100);
  • Mathematica
    $RecursionLimit = 4096;
    a[1] = 0;
    a[n_] := a[n] = Module[{f, b}, f = FactorInteger[n][[All, 1]];
         b[m_, i_] := b[m, i] = m == 0 || i > 0 &&
         (b[m, i - 1] || f[[i]] <= m && b[m - f[[i]], i]);
         With[{t = Length[f]}, Sum[
         If[b[j, t] && b[n - j, t], 1, 0], {j, 0, n}]]];
    Table[a[n], {n, 0, 1000}] (* Jean-François Alcover, Dec 13 2018, after Alois P. Heinz, corrected and updated Aug 07 2021 *)
    f[n_] := Block[{c = 2, k = 2, p = First@# & /@ FactorInteger@ n}, While[k < n, If[ IntegerPartitions[k, All, p, 1] != {} && IntegerPartitions[n - k, All, p, 1] != {}, c++]; k++]; c]; f[0] = 1; f[1] = 0; Array[f, 75] (* Robert G. Wilson v, Aug 22 2021 *)

Formula

a(n) = |{ k : k and n-k can be written as a sum of prime factors of n }|.
a(n) = 2 <=> n is prime (A000040).
a(n) >= n-1 <=> n in {1,2,3,4} union { A008588 }.
a(n) = (n+4)/2 <=> n in { A100484 } minus { 4 }.
a(n) = (n+9)/3 <=> n in { A001748 } minus { 9 }.
a(n) = (n+25)/5 <=> n in { A001750 } minus { 25 }.
a(n) = (n+49)/7 <=> n in { A272470 } minus { 49 }.
a(n^2) = n+1 <=> n = 0 or n is prime <=> n in { A182986 }.
a(A001248(n)) = A008864(n).
a(n) is odd <=> n in { A163300 }.
a(n) is even <=> n in { A004280 }.

A164023 Smallest of largest parts in partitions of n into exactly three primes.

Original entry on oeis.org

2, 3, 3, 3, 5, 5, 5, 5, 7, 5, 7, 7, 11, 7, 11, 7, 13, 11, 11, 11, 13, 11, 13, 11, 17, 13, 17, 11, 19, 13, 17, 13, 19, 13, 19, 17, 23, 17, 23, 17, 31, 17, 23, 19, 29, 17, 31, 19, 29, 19, 31, 19, 37, 23, 29, 23, 31, 23, 31, 23, 41, 29, 37, 23, 37, 29, 41, 31, 41, 29, 37, 29, 47, 31
Offset: 6

Views

Author

Reinhard Zumkeller, Aug 08 2009

Keywords

Comments

a(n) >= floor(n/3); a(A001748(n)) = A000040(n).

Examples

			a(16) = min{max(2,3,11),max(2,7,7)} = min{11,7} = 7;
a(17) = min{max(2,2,13),max(2,3,11),max(3,7,7),max(5,5,7)} = min{13,11,7,7} = 7.
		

Crossrefs

A253106 Semiprimes with smallest factor <= 3.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 26, 33, 34, 38, 39, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 118, 122, 123, 129, 134, 141, 142, 146, 158, 159, 166, 177, 178, 183, 194, 201, 202, 206, 213, 214, 218, 219, 226, 237, 249, 254, 262, 267, 274, 278
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 26 2014

Keywords

Comments

A253046(a(n)) != a(n).

Crossrefs

Programs

  • Haskell
    a253106 n = a253106_list !! (n-1)
    a253106_list = filter f [1..] where
       f x = p <= 3 && a010051' (div x p) == 1  where p = a020639 x

A309131 Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.

Original entry on oeis.org

2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2019

Keywords

Comments

T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n).
The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1).
The k-th column of the triangle T gives the multiples of prime(1 + k).
Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - Michel Marcus, Jul 15 2019

Examples

			The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k|    0     1     2     3     4     5     6     7     8
---+-----------------------------------------------------
1  |    2
2  |    4     3
3  |    6     6     5
4  |    8     9    10     7
5  |   10    12    15    14    11
6  |   12    15    20    21    22    13
7  |   14    18    25    28    33    26    17
8  |   16    21    30    35    44    39    34    19
9  |   18    24    35    42    55    52    51    38    23
...
For n = 3 the matrix M(3) is
          2,         3,         5
    M_{2,1},         2,         3
    M_{3,1},   M_{3,2},         2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
		

Crossrefs

Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal.

Programs

  • Magma
    [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
    
  • Maple
    a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]]
  • PARI
    T(n, k) = (n - k)*prime(1 + k);
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
    
  • Sage
    [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output

Formula

T(n, k) = A025581(n, k)*A000040(1 + k).

A351958 a(1) = 1, followed by numbers k for which the primorial inflation of k is equal to x * p#, where p# is the primorial (A034386) of some prime p, and 1 <= x < p.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 56, 57, 58, 59, 61, 62, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 82, 83, 86, 87, 88, 89, 92, 93, 94, 97, 101, 102, 103, 104, 106, 107, 109, 111, 113, 114, 116, 118, 122, 123, 124
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2022

Keywords

Comments

Numbers k such that A108951(k) is in A060735.
Numbers k for which A324886(k) is a power of prime (in A000961).
Numbers k such that A108951(k) / A002110(A061395(k)) < A000040(1+A061395(k)), the next prime larger than the greatest prime dividing k.

Crossrefs

Positions of 1's in A329040.
Cf. A000961, A002110, A061395, A034386, A060735, A108951, A324886, A351956 (characteristic function).
Subsequences: A000040, A008578, A100484, A001748 \ {9}, A001749 \ {8}.
Cf. also A344591.

Programs

A370008 a(n) is the greatest prime less than 3*prime(n).

Original entry on oeis.org

5, 7, 13, 19, 31, 37, 47, 53, 67, 83, 89, 109, 113, 127, 139, 157, 173, 181, 199, 211, 211, 233, 241, 263, 283, 293, 307, 317, 317, 337, 379, 389, 409, 409, 443, 449, 467, 487, 499, 509, 523, 541, 571, 577, 587, 593, 631, 661, 677, 683, 691, 709, 719, 751
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2024

Keywords

Examples

			5 < 3*2 < 7 < 3*3 < 11 < 13 < 3*5, so (a(1), a(2), a(3)) = (5,7,13).
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[PrimePi[3*Prime[n]]], {n,1,200}]
  • PARI
    a(n) = precprime(3*prime(n)); \\ Michel Marcus, Feb 10 2024

A063534 Numbers k such that C(k) = H(k) + d(k), where C(k) is Chowla's function A048050, H(k) is the half-totient function A023022 and d(k) is the number of divisors function A000005.

Original entry on oeis.org

6, 8, 15, 21, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 753
Offset: 1

Views

Author

Jason Earls, Aug 02 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[1, #] - 1 - # == EulerPhi[#]/2 + DivisorSigma[0, #] &] (* Paolo Xausa, Apr 17 2024 *)
  • PARI
    C(n)=sigma(n)-n-1;
    H(n)=eulerphi(n)/2;
    j=[]; for(n=1,1200, if(C(n)==H(n)+numdiv(n),j=concat(j,n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (sigma(m) - m - 1 == eulerphi(m)/2 + numdiv(m), write("b063534.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009
    
  • PARI
    is(n) = {my(f = factor(n)); sigma(f) - n - 1 == eulerphi(f) / 2 + numdiv(f);} \\ Amiram Eldar, Apr 15 2024

Formula

Conjecture: a(n) = A001748(n), n <> 2. - R. J. Mathar, Dec 15 2008
The conjecture is false. The least counterexample is a(11546) = 368335 = 5 * 11 * 37 * 181. The next counterexample is 4922335, and there are no more below 10^10. - Amiram Eldar, Apr 15 2024

A171156 Numbers of the form 2p or 3p where p is a prime greater than 3.

Original entry on oeis.org

10, 14, 15, 21, 22, 26, 33, 34, 38, 39, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 118, 122, 123, 129, 134, 141, 142, 146, 158, 159, 166, 177, 178, 183, 194, 201, 202, 206, 213, 214, 218, 219, 226, 237, 249, 254, 262, 267, 274, 278, 291, 298, 302
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 04 2009

Keywords

Comments

Squarefree semiprimes (A006881) which have exactly one prime factor <=3 [R. J. Mathar, Dec 09 2009]

Crossrefs

Programs

  • Maple
    isA171156 := proc(n) local f; f := numtheory[factorset](n) ; if numtheory[bigomega](n) = 2 and nops(f) = 2 then if f = {2,3} then false; else (n mod 2) = 0 or (n mod 3) = 0 ; fi; else false; fi; end:
    for n from 10 to 500 do if isA171156(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Dec 09 2009

Extensions

Edited by Charles R Greathouse IV, Mar 25 2010
Previous Showing 21-30 of 41 results. Next