cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A057669 Triangle T(n,k) of number of minimal 3-covers of an unlabeled n+3-set that cover k points of that set uniquely (k=3,..,n+3).

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 7, 7, 6, 3, 11, 13, 14, 9, 4, 16, 22, 26, 21, 13, 5, 23, 34, 44, 40, 31, 17, 7, 31, 50, 68, 68, 59, 41, 23, 8, 41, 70, 100, 106, 101, 79, 55, 28, 10, 53, 95, 140, 157, 158, 136, 106, 68, 35, 12, 67, 125, 190, 221, 234, 214, 182, 132, 85, 42, 14, 83, 161
Offset: 0

Views

Author

Vladeta Jovovic, Oct 16 2000

Keywords

Comments

Row sums give A005783.

Examples

			[1], [2, 1], [4, 3, 2], [7, 7, 6, 3], ...
There are 7 minimal 3-covers of an unlabeled 6-set that cover 3 points of that set uniquely: {{1}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
		

Crossrefs

Formula

T(n, k) = b(n, k)-b(n-1, k); b(n, k) = coefficient of x^k in x^3/6*(Z(S_n; 5+3*x, 5+3*x^2, ...)+3*Z(S_n; 3+x, 5+3*x^2, 3+x^3, 5+3*x^4, ...)+2*Z(S_n; 2, 2, 5+3*x^3, 2, 2, 5+3*x^6, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.

A057222 Number of 4 X n binary matrices with 1 unit column up to row and column permutations.

Original entry on oeis.org

1, 6, 27, 102, 333, 969, 2572, 6309, 14472, 31333, 64500, 127011, 240475, 439626, 778848, 1341286, 2251350, 3691629, 5925443, 9326451, 14417175, 21918490, 32812572, 48422262, 70510271, 101402091, 144137322, 202654565, 282015876, 388677651, 530815688, 718713015, 965220510
Offset: 1

Views

Author

Vladeta Jovovic, Sep 18 2000

Keywords

Comments

A unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 4-covers of an unlabeled n-set that cover 5 points of that set uniquely (if offset is 5).
Generally, the number b(n, k) of 4 X n binary matrices with k=0, 1, ..., n unit columns, up to row and column permutations, is coefficient of x^k in 1/24*(Z(S_n; 12 + 4*x, 12 + 4*x^2, ... ) + 8*Z(S_n; 3 + x, 3 + x^2, 12 + 4*x^3, 3 + x^4, 3 + x^5, 12 + 4*x^6, ...) + 6*Z(S_n; 6 + 2*x, 12 + 4*x^2, 6 + 2*x^3, 12 + 4*x^4, ...) + 3*Z(S_n; 4, 12 + 4*x^2, 4, 12 + 4*x^4, ...) + 6*Z(S_n; 2, 4, 2, 12 + 4*x^4, 2, 4, 2, 12 + 4*x^8, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f. for b(n,k), k=0,1,..,n, is 1/k!* k - th derivative of 1/24*(1/(1 - x)^12/(1 - x*t)^4 + 8/(1 - x)^3/(1 - x^3)^3/(1 - x^3*t^3)/(1 - x*t) + 6/(1 - x)^6/(1 - x^2)^3/(1 - x^2*t^2)/(1 - x*t)^2 + 3/(1 - x)^4/(1 - x^2)^4/(1 - x^2*t^2)^2 + 6/(1 - x)^2/(1 - x^2)/(1 - x^4)^2/(1 - x^4*t^4)) with respect to t, when t=0.

Crossrefs

Formula

G.f.: 1/6*x*(1/(1-x)^12+2/(1-x^3)^3/(1-x)^3+3/(1-x^2)^3/(1-x)^6).

Extensions

Added more terms, Joerg Arndt, May 21 2013

A057968 Triangle T(n,k) of numbers of minimal 5-covers of an unlabeled n+5-set that cover k points of that set uniquely (k=5,..,n+5).

Original entry on oeis.org

1, 4, 1, 19, 7, 2, 91, 46, 16, 3, 436, 279, 115, 28, 5, 1991, 1563, 740, 221, 49, 7, 8651, 7978, 4309, 1524, 405, 75, 10, 35354, 37290, 22604, 9272, 2875, 659, 115, 13, 135617, 159948, 107584, 50058, 17840, 4866, 1042, 163, 18, 488312, 633211
Offset: 0

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A005785.

Examples

			[1], [4, 1], [19, 7, 2], [91, 46, 16, 3], [436, 279, 115, 28, 5], ...; there are 46 minimal 5-covers of an unlabeled 8-set that cover 6 points of that set uniquely.
		

Crossrefs

Formula

T(n, k)=b(n, k)-b(n-1, k); b(n, k)=coefficient of x^k in (x^5/5!)*(Z(S_n; 27+5*x, 27+5*x^2, ...)+10*Z(S_n; 13+3*x, 27+5*x^2, 13+3*x^3, 27+5*x^4, ...)+15*Z(S_n; 7+x, 27+5*x^2, 7+x^3, 27+5*x^4, ...)+20*Z(S_n; 6+2*x, 6+2*x^2, 27+5*x^3, 6+2*x^4, 6+2*x^5, 27+5*x^6, ...)+20*Z(S_n; 4, 6+2*x^2, 13+3*x^3, 6+2*x^4, 4, 27+5*x^6, 4, 6+2*x^8, 13+3*x^9, 6+2*x^10, 4, 27+5*x^12, ...)+30*Z(S_n; 3+x, 7+x^2, 3+x^3, 27+5*x^4, 3+x^5, 7+x^6, 3+x^7, 27+5*x^8, ...)+24*Z(S_n; 2, 2, 2, 2, 27+5*x^5, 2, 2, 2, 2, 27+5*x^10, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.

A239473 Triangle read by rows: signed version of A059260: coefficients for expansion of partial sums of sequences a(n,x) in terms of their binomial transforms (1+a(.,x))^n ; Laguerre polynomial expansion of the truncated exponential.

Original entry on oeis.org

1, 0, 1, 1, -1, 1, 0, 2, -2, 1, 1, -2, 4, -3, 1, 0, 3, -6, 7, -4, 1, 1, -3, 9, -13, 11, -5, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0

Views

Author

Tom Copeland, Mar 19 2014

Keywords

Comments

With T the lower triangular array above and the Laguerre polynomials L(k,x) = Sum_{j=0..k} (-1)^j binomial(k, j) x^j/j!, the following identities hold:
(A) Sum_{k=0..n} (-1)^k L(k,x) = Sum_{k=0..n} T(n,k) x^k/k!;
(B) Sum_{k=0..n} x^k/k! = Sum_{k=0..n} T(n,k) L(k,-x);
(C) Sum_{k=0..n} x^k = Sum_{k=0..n} T(n,k) (1+x)^k = (1-x^(n+1))/(1-x).
More generally, for polynomial sequences,
(D) Sum_{k=0..n} P(k,x) = Sum_{k=0..n} T(n,k) (1+P(.,x))^k,
where, e.g., for an Appell sequence, such as the Bernoulli polynomials, umbrally, (1+ Ber(.,x))^k = Ber(k,x+1).
Identity B follows from A through umbral substitution of j!L(j,-x) for x^j in A. Identity C, related to the cyclotomic polynomials for prime index, follows from B through the Laplace transform.
Integrating C gives Sum_{k=0..n} T(n,k) (2^(k+1)-1)/(k+1) = H(n+1), the harmonic numbers.
Identity A >= 0 for x >= 0 (see MathOverflow link for evaluation in terms of Hermite polynomials).
From identity C, W(m,n) = (-1)^n Sum_{k=0..n} T(n,k) (2-m)^k = number of walks of length n+1 between any two distinct vertices of the complete graph K_m for m > 2.
Equals A112468 with the first column of ones removed. - Georg Fischer, Jul 26 2023

Examples

			Triangle begins:
   1
   0    1
   1   -1    1
   0    2   -2    1
   1   -2    4   -3    1
   0    3   -6    7   -4    1
   1   -3    9  -13   11   -5    1
   0    4  -12   22  -24   16   -6    1
   1   -4   16  -34   46  -40   22   -7    1
   0    5  -20   50  -80   86  -62   29   -8    1
   1   -5   25  -70  130 -166  148  -91   37   -9    1
		

Crossrefs

For column 2: A001057, A004526, A008619, A140106.
Column 3: A002620, A087811.
Column 4: A002623, A173196.
Column 5: A001752.
Column 6: A001753.
Cf. Bottomley's cross-references in A059260.
Embedded in alternating antidiagonals of T are the reversals of arrays A071921 (A225010) and A210220.

Programs

  • Magma
    [[(&+[(-1)^(j+k)*Binomial(j,k): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
    
  • Maple
    A239473 := proc(n,k)
        add(binomial(j,k)*(-1)^(j+k),j=k..n) ;
    end proc; # R. J. Mathar, Jul 21 2016
  • Mathematica
    Table[Sum[(-1)^(j+k)*Binomial[j,k], {j,0,n}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 06 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0,n, (-1)^(j+k)*binomial(j, k)), ", "))) \\ G. C. Greubel, Feb 06 2018
    
  • Sage
    Trow = lambda n: sum((x-1)^j for j in (0..n)).list()
    for n in (0..10): print(Trow(n)) # Peter Luschny, Jul 09 2019

Formula

T(n, k) = Sum_{j=0..n} (-1)^(j+k) * binomial(j, k).
E.g.f: (exp(t) - (x-1)*exp((x-1)*t))/(2-x).
O.g.f. (n-th row): (1-(x-1)^(n+1))/(2-x).
Associated operator identities:
With D=d/dx, :xD:^n=x^n*D^n, and :Dx:^n=D^n*x^n, then bin(xD,n)= binomial(xD,n)=:xD:^n/n! and L(n,-:xD:)=:Dx:^n/n!=bin(xD+n,n)=(-1)^n bin(-xD-1,n),
A-o) Sum_{k=0..n} (-1)^k L(k,-:xD:) = Sum_{k=0..n} :-Dx:^k/k!
= Sum_{k=0..n} T(n,k) :-xD:^k/k! = Sum_{k=0..n} (-1)^k T(n,k)bin(xD,k)
B-o) Sum_{k=0..n} :xD:^k/k! = Sum_{k=0..n}, T(n,k) L(k,-:xD:)
= Sum_{k=0..n} T(n,k) :Dx:^k/k! = Sum_{k=0..n}, bin(xD,k).
Associated binomial identities:
A-b) Sum_{k=0..n} (-1)^k bin(s+k,k) = Sum_{k=0..n} (-1)^k T(n,k) bin(s,k)
= Sum_{k=0..n} bin(-s-1,k) = Sum{k=0..n} T(n,k) bin(-s-1+k,k)
B-b) Sum_{k=0..n} bin(s,k) = Sum_{k=0..n} T(n,k) bin(s+k,k)
= Sum_{k=0..n} (-1)^k bin(-s-1+k,k)
= Sum_{k=0..n} (-1)^k T(n,k) bin(-s-1,k).
In particular, from B-b with s=n, Sum_{k=0..n} T(n,k) bin(n+k,k) = 2^n. From B-b with s=0, row sums are all 1.
From identity C with x=-2, the unsigned row sums are the Jacobsthal sequence, i.e., Sum_{k=0..n} T(n,k) (1+(-2))^k = (-1)^n A001045(n+1); for x=2, the Mersenne numbers A000225; for x=-3, A014983 or signed A015518; for x=3, A003462; for x=-4, A014985 or signed A015521; for x=4, A002450; for x=-5, A014986 or signed A015531; and for x=5, A003463; for x=-6, A014987 or signed A015540; and for x=6, A003464.
With -s-1 = m = 0,1,2,..., B-b gives finite differences (recursions):
Sum_{k=0..n} (-1)^k T(n,k) bin(m,k) = Sum_{k=0..n} (-1)^k bin(m+k,k) = T(n+m,m), i.e., finite differences of the columns of T generate shifted columns of T. The columns of T are signed, shifted versions of sequences listed in the cross-references. Since the finite difference is an involution, T(n,k) = Sum_{j=0..k} (-1)^j T(n+j,j) bin(k,j)}. Gauss-Newton interpolation can be applied to give a generalized T(n,s) for s noninteger.
From identity C, S(n,m) = Sum_{k=0..n} T(n,k) bin(k,m) = 1 for m < n+1 and 0 otherwise, i.e., S = T*P, where S = A000012, as a lower triangular matrix and P = Pascal = A007318, so T = S*P^(-1), where P^(-1) = A130595, the signed Pascal array (see A132440), the inverse of P, and T^(-1) = P*S^(-1) = P*A167374 = A156644.
U(n,cos(x)) = e^(-n*i*x)*Sum_{k=0..n} T(n,k)*(1+e^(2*i*x))^k = sin((n+1)x)/sin(x), where U is the Chebyschev polynomial of the second kind A053117 and i^2 = -1. - Tom Copeland, Oct 18 2014
From Tom Copeland, Dec 26 2015: (Start)
With a(n,x) = e^(nx), the partial sums are 1+e^x+...+e^(nx) = Sum_{k=0..n} T(n,k) (1+e^x)^k = [ x / (e^x-1) ] [ e^((n+1)x) -1 ] / x = [ (x / (e^x-1)) e^((n+1)x) - (x / (e^x-1)) ] / x = Sum_{k>=0} [ (Ber(k+1,n+1) - Ber(k+1,0)) / (k+1) ] * x^k/k!, where Ber(n,x) are the Bernoulli polynomials (cf. Adams p. 140). Evaluating (d/dx)^m at x=0 of these expressions gives relations among the partial sums of the m-th powers of the integers, their binomial transforms, and the Bernoulli polynomials.
With a(n,x) = (-1)^n e^(nx), the partial sums are 1-e^x+...+(-1)^n e^(nx) = Sum_{k=0..n} T(n,k) (1-e^x)^k = [ (-1)^n e^((n+1)x) + 1 ] / (e^x+1) = [ (-1)^n (2 / (e^x+1)) e^((n+1)x) + (2 / (e^x+1)) ] / 2 = (1/2) Sum_{k>=0} [ (-1)^n Eul(k,n+1) + Eul(k,0) ] * x^k/k!, where Eul(n,x) are the Euler polynomials. Evaluating (d/dx)^m at x=0 of these expressions gives relations among the partial sums of signed m-th powers of the integers; their binomial transforms, related to the Stirling numbers of the second kind and face numbers of the permutahedra; and the Euler polynomials. (End)
As in A059260, a generator in terms of bivariate polynomials with the coefficients of this entry is given by (1/(1-y))*1/(1 + (y/(1-y))*x - (1/(1-y))*x^2) = 1 + y + (x^2 - x*y + y^2) + (2*x^2*y - 2*x*y^2 + y^3) + (x^4 - 2*x^3*y + 4*x^2*y^2 - 3*x*y^3 + y^4) + ... . This is of the form -h2 * 1 / (1 + h1*x + h2*x^2), related to the bivariate generator of A049310 with h1 = y/(1-y) and h2 = -1/(1-y) = -(1+h1). - Tom Copeland, Feb 16 2016
From Tom Copeland, Sep 05 2016: (Start)
Letting P(k,x) = x in D gives Sum_{k=0..n} T(n,k)*Sum_{j=0..k} binomial(k,j) = Sum_{k=0..n} T(n,k) 2^k = n + 1.
The quantum integers [n+1]q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)) = q^(-n)*(1 - q^(2*(n+1))) / (1 - q^2) = q^(-n)*Sum{k=0..n} q^(2k) = q^(-n)*Sum_{k=0..n} T(n,k)*(1 + q^2)^k. (End)
T(n, k) = [x^k] Sum_{j=0..n} (x-1)^j. - Peter Luschny, Jul 09 2019
a(n) = -n + Sum_{k=0..n} A341091(k). - Thomas Scheuerle, Jun 17 2022

Extensions

Inverse array added by Tom Copeland, Mar 26 2014
Formula re Euler polynomials corrected by Tom Copeland, Mar 08 2024

A057223 Number of 4 X n binary matrices without unit columns up to row and column permutations.

Original entry on oeis.org

1, 4, 14, 44, 127, 335, 830, 1931, 4258, 8943, 17984, 34765, 64873, 117220, 205718, 351552, 586348, 956393, 1528350, 2396631, 3693123, 5599550, 8363304, 12317274, 17904795, 25710327, 36497466, 51255153, 71253960, 98113791, 133885404, 181147299, 243121170, 323807952, 428148174
Offset: 0

Views

Author

Vladeta Jovovic, Sep 18 2000

Keywords

Comments

A unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 4-covers of an unlabeled n-set that cover 4 points of that set uniquely (if offset is 4).

Crossrefs

Programs

  • PARI
    x='x+O('x^66); Vec(1/24*(1/(1-x)^12 + 8/(1-x)^3/(1-x^3)^3 + 6/(1-x)^6/(1-x^2)^3 + 3/(1-x)^4/(1-x^2)^4 + 6/(1-x)^2/(1-x^2)/(1-x^4)^2)) \\ Joerg Arndt, May 21 2013

Formula

1/24*(Z(S_n; 12, 12, ...) + 8*Z(S_n; 3, 3, 12, 3, 3, 12, ...) + 6*Z(S_n; 6, 12, 6, 12, ...) + 3*Z(S_n; 4, 12, 4, 12, ...) + 6*Z(S_n; 2, 4, 2, 12, 2, 4, 2, 12, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f. : 1/24*(1/(1 - x)^12 + 8/(1 - x)^3/(1 - x^3)^3 + 6/(1 - x)^6/(1 - x^2)^3 + 3/(1 - x)^4/(1 - x^2)^4 + 6/(1 - x)^2/(1 - x^2)/(1 - x^4)^2).

Extensions

Added more terms, Joerg Arndt, May 21 2013

A060099 G.f.: 1/((1-x^2)^3*(1-x)^4).

Original entry on oeis.org

1, 4, 13, 32, 71, 140, 259, 448, 742, 1176, 1806, 2688, 3906, 5544, 7722, 10560, 14223, 18876, 24739, 32032, 41041, 52052, 65429, 81536, 100828, 123760, 150892, 182784, 220116, 263568, 313956, 372096, 438957, 515508, 602889, 702240, 814891, 942172, 1085623
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Comments

Fourth column (m=3) of triangle A060098.
Partial sums of A038163.
Equals the tetrahedral numbers, [1, 4, 10, 20, ...] convolved with the aerated triangular numbers, [1, 0, 3, 0, 6, 0, 10, ...]. [Gary W. Adamson, Jun 11 2009]

References

  • B. Broer, Hilbert series for modules of covariants, in Algebraic Groups and Their Generalizations..., Proc. Sympos. Pure Math., 56 (1994), Part I, 321-331. See p. 329.

Crossrefs

Cf. A001752 (for the similar series 1/((1-x)^4*(1-x^2))).
Cf. A028346 (for the similar series 1/((1-x)^4*(1-x^2)^2)).

Programs

  • Mathematica
    a[n_]:=If[OddQ[n],((1+n) (3+n) (5+n)^2 (7+n) (9+n))/5760,((2+n) (4+n) (6+n) (8+n) (15+10 n+n^2))/5760]; Map[a,Range[0,100]] (* Peter J. C. Moses, Mar 24 2013 *)
    CoefficientList[Series[1/((1-x^2)^3*(1-x)^4),{x,0,100}],x] (* Peter J. C. Moses, Mar 24 2013 *)
    LinearRecurrence[{4,-3,-8,14,0,-14,8,3,-4,1},{1,4,13,32,71,140,259,448,742,1176},40] (* Harvey P. Dale, Apr 06 2018 *)

Formula

a(n) = Sum_{} A060098(n+3, 3).
G.f.: 1/((1-x)^7*(1+x)^3).

A112465 Riordan array (1/(1+x), x/(1-x)).

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 1, 1, 1, 1, 0, 2, 2, 1, -1, 1, 2, 4, 3, 1, 1, 0, 3, 6, 7, 4, 1, -1, 1, 3, 9, 13, 11, 5, 1, 1, 0, 4, 12, 22, 24, 16, 6, 1, -1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, -1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Inverse is A112466. Note that C(n,k) = Sum_{j = 0..n-k} C(j+k-1, j).

Examples

			Triangle starts
   1;
  -1, 1;
   1, 0, 1;
  -1, 1, 1,  1;
   1, 0, 2,  2,  1;
  -1, 1, 2,  4,  3,  1;
   1, 0, 3,  6,  7,  4,  1;
  -1, 1, 3,  9, 13, 11,  5, 1;
   1, 0, 4, 12, 22, 24, 16, 6, 1;
Production matrix begins
  -1, 1;
   0, 1, 1;
   0, 0, 1, 1;
   0, 0, 0, 1, 1;
   0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 0, 0, 1, 1; - _Paul Barry_, Apr 08 2011
		

Crossrefs

Columns: A033999(n) (k=0), A000035(n) (k=1), A004526(n) (k=2), A002620(n-1) (k=3), A002623(n-4) (k=4), A001752(n-5) (k=5), A001753(n-6) (k=6), A001769(n-7) (k=7), A001779(n-8) (k=8), A001780(n-9) (k=9), A001781(n-10) (k=10), A001786(n-11) (k=11), A001808(n-12) (k=12).
Diagonals: A000012(n) (k=n), A023443(n) (k=n-1), A152947(n-1) (k=n-2), A283551(n-3) (k=n-3).
Main diagonal: A072547.
Sums: A078008 (row), A078024 (diagonal), A092220 (signed diagonal), A280560 (signed row).

Programs

  • Haskell
    a112465 n k = a112465_tabl !! n !! k
    a112465_row n = a112465_tabl !! n
    a112465_tabl = iterate f [1] where
       f xs'@(x:xs) = zipWith (+) ([-x] ++ xs ++ [0]) ([0] ++ xs')
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    A112465:= func< n,k | (-1)^(n+k)*(&+[(-1)^j*Binomial(j+k-1,j): j in [0..n-k]]) >;
    [A112465(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Apr 18 2025
    
  • Mathematica
    T[n_, k_]:= Sum[Binomial[j+k-1, j]*(-1)^(n-k-j), {j, 0, n-k}];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jul 23 2018 *)
  • SageMath
    def A112465(n,k): return (-1)^(n+k)*sum((-1)^j*binomial(j+k-1,j) for j in range(n-k+1))
    print(flatten([[A112465(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 18 2025

Formula

Number triangle T(n, k) = Sum_{j=0..n-k} (-1)^(n-k-j)*C(j+k-1, j).
T(2*n, n) = A072547(n) (main diagonal). - Paul Barry, Apr 08 2011
From Reinhard Zumkeller, Jan 03 2014: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k), 0 < k < n, with T(n, 0) = (-1)^n and T(n, n) = 1.
T(n, k) = A108561(n, n-k). (End)
T(n, k) = T(n-1, k-1) + T(n-2, k) + T(n-2, k-1), T(0, 0) = 1, T(1, 0) = -1, T(1, 1) = 1, T(n, k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 11 2014
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 + x + x^2/2! + x^3/3!) = -1 + 2*x^2/2! + 6*x^3/3! + 13*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014

A001779 Expansion of 1/((1+x)(1-x)^8).

Original entry on oeis.org

1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 7274, 12174, 19650, 30738, 46782, 69498, 101046, 144111, 201993, 278707, 379093, 508937, 675103, 885677, 1150123, 1479452, 1886404, 2385644, 2993972
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of positive terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 - z)^n. Also the convolution of A001769 and A000012; A001753 and A001477; A001752 and A000217; A002623 and A000292; A002620 and A000332; A004526 and A000389. - Sergio Falcon (sfalcon(AT)dma.ulpgc.es), Feb 13 2007

Crossrefs

Cf. A001769 (first differences), A169795 (binomial transf.)

Programs

  • Magma
    [1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A001779 := proc(n) 1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 ; end proc:
    seq(A001779(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[1/((1 + x) (1 - x)^8), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,7,29,91,239,553,1163,2269,4166},30] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(2*n+9)*(4*n^6+108*n^5+1138*n^4+5904*n^3+15628*n^2+19638*n + 8925)/80640 +(-1)^n/256 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = (-1)^{7-n}*Sum_{i=0..n} ((-1)^(7-i)*binomial(7+i,i)). - Sergio Falcon, Feb 13 2007
a(n)+a(n+1) = A000580(n+8). - R. J. Mathar, Jan 06 2021

A115262 Correlation triangle for n+1.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 8, 8, 4, 5, 11, 14, 11, 5, 6, 14, 20, 20, 14, 6, 7, 17, 26, 30, 26, 17, 7, 8, 20, 32, 40, 40, 32, 20, 8, 9, 23, 38, 50, 55, 50, 38, 23, 9, 10, 26, 44, 60, 70, 70, 60, 44, 26, 10, 11, 29, 50, 70, 85, 91, 85, 70, 50, 29, 11
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

This sequence (formatted as a square array) gives the counts of all possible squares in an m X n rectangle. For example, 11 = 8 (1 X 1 squares) + 3 (2 X 2 square) in 4 X 2 rectangle. - Philippe Deléham, Nov 26 2009
From Clark Kimberling, Feb 07 2011: (Start)
Also the accumulation array of min{n,k}, when formatted as a rectangle.
This is the accumulation array of the array M=A003783 given by M(n,k)=min{n,k}; see A144112 for the definition of accumulation array.
The accumulation array of A115262 is A185957. (End)
From Clark Kimberling, Dec 22 2011: (Start)
As a square matrix, A115262 is the self-fusion matrix of A000027 (1,2,3,4,...). See A193722 for the definition of fusion and A202673 for characteristic polynomials associated with A115622. (End)

Examples

			Triangle begins
  1;
  2,  2;
  3,  5,  3;
  4,  8,  8,  4;
  5, 11, 14, 11,  5;
  6, 14, 20, 20, 14,  6;
  ...
When formatted as a square matrix:
  1,  2,  3,  4,  5, ...
  2,  5,  8, 11, 14, ...
  3,  8, 14, 20, 26, ...
  4, 11, 20, 30, 40, ...
  5, 14, 26, 40, 55, ...
  ...
		

Crossrefs

For the triangular version: row sums are A001752. Diagonal sums are A097701. T(2n,n) is A000330(n+1).
Diagonals (1,5,...): A000330 (square pyramidal numbers),
diagonals (2,8,...): A007290,
diagonals (3,11,...): A051925,
diagonals (4,14,...): A159920,
antidiagonal sums: A001752.

Programs

  • Mathematica
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[k, {k, 1, 12}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    (* Clark Kimberling, Dec 22 2011 *)

Formula

Let f(m,n) = m*(m-1)*(3*n-m-1)/6. This array is (with a different offset) the infinite square array read by antidiagonals U(m,n) = f(n,m) if m < n, U(m,n) = f(m,n) if m <= n. See A271916. - N. J. A. Sloane, Apr 26 2016
G.f.: 1/((1-x)^2*(1-x*y)^2*(1-x^2*y)).
Number triangle T(n, k) = Sum_{j=0..n} [j<=k]*(k-j+1)[j<=n-k]*(n-k-j+1).
T(2n,n) - T(2n,n+1) = n+1.

A045513 Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)).

Original entry on oeis.org

1, 1, 3, 5, 10, 15, 27, 39, 63, 90, 135, 187, 270, 364, 505, 670, 902, 1173, 1545, 1976, 2550, 3218, 4081, 5083, 6357, 7825, 9659, 11772, 14366, 17342, 20956, 25080, 30031, 35667, 42357, 49945, 58881
Offset: 0

Views

Author

Keywords

Comments

This is associated with the root system E8, and can be described using the additive function on the affine E8 diagram:
3
|
2--4--6--5--4--3--2--1

Crossrefs

For G2, the corresponding sequence is A001399.
For D4, the corresponding sequence is A001752.
For F4, the corresponding sequence is A115264.
For E6, the corresponding sequence is A164680.
For E7, the corresponding sequence is A210068.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)) )); // G. C. Greubel, Jan 13 2020
  • Maple
    seq(coeff(series(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)^2(1-x^3)^2(1-x^4)^2(1-x^5)(1-x^6)),{x,0,40}],x] (* Harvey P. Dale, Sep 16 2019 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)).
Previous Showing 11-20 of 35 results. Next