cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A308946 Expansion of e.g.f. 1/(1 - x*(1 + x/2)*exp(x)).

Original entry on oeis.org

1, 1, 5, 30, 244, 2485, 30351, 432502, 7043660, 129050649, 2627117875, 58829021416, 1437117395946, 38032508860177, 1083932872119839, 33098858988564090, 1078083456543449416, 37309607437056658129, 1367138649165397662627, 52879280631976735387588
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - x (1 + x/2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k + 1, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} (k*(k + 1)/2)*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A000217(k) * a(n-k).
a(n) ~ n! * (2 + r) / ((2 + 4*r + r^2) * r^n), where r = 0.49122518354447387971550543450091640839121607... is the root of the equation exp(r)*r*(2 + r) = 2. - Vaclav Kotesovec, Aug 09 2021

A209404 Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+14, n), n >= 0.

Original entry on oeis.org

1, 15, 128, 816, 4320, 20064, 84480, 329472, 1208064, 4209920, 14057472, 45260800, 141213696, 428654592, 1270087680, 3683254272, 10478223360, 29297934336, 80648077312, 218864025600, 586290298880, 1551944908800, 4063273943040
Offset: 0

Views

Author

Brad Clardy, Mar 08 2012

Keywords

Comments

The MAGMA program provided calculates the coefficients of order one Chebyshev polynomials, for any arbitrary level. For example, setting Rn to 0 produces A001792, 1 produces A001793, 2 produces A001794, 3 produces A006974, 4 produces A006975, and 5 produces A006976. This sequence is produced with an Rn of 6.

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(n+14)*Binomial(n+6,6)/7); # G. C. Greubel, Oct 18 2019
  • Magma
    Rn:=6; [2^(n-1)/(Rn+1)*Binomial(n+Rn,Rn)*(n+(Rn+1)*2) : n in [0..22]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 23); Coefficients(R!( (1-x)/(1-2*x)^8 )); // Marius A. Burtea, Oct 17 2019
    
  • Maple
    seq(2^(n-1)*(n+14)*binomial(n+6,6)/7, n=0..30); # G. C. Greubel, Oct 18 2019
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x)^8, {x,0,30}], x] (* or *) Table[2^(n-1)*Binomial[n+6,6]*(n+14)/7, {n,0,30}] (* G. C. Greubel, Jan 03 2018 *)
  • PARI
    for(n=0,30, print1(2^(n-1)*binomial(n+6,6)*(n+14)/7, ", ")) \\ G. C. Greubel, Jan 03 2018
    

Formula

a(n) = 2^(n-1)*binomial(n+6, 6)*(n+14)/7 = -A053120(n+14, n), n >= 0. [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]
G.f.: (1-x)/(1-2*x)^8. - Colin Barker, May 31 2013
E.g.f.: (1/315)*exp(2*x)*(315 + 4095*x + 11340*x^2 + 11550*x^3 + 5250*x^4 + 1134*x^5 + 112*x^6 + 4*x^7). - Stefano Spezia, Oct 17 2019

Extensions

Name made more specific by Wolfdieter Lang, Nov 25 2019

A081265 Triangle of coefficients of the polynomials a(n, x) = 2*a(n-1, x)+ x^2*a(n-2,x), n >= 1, a(0, x) = 1, a(1, x) = 1.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 4, 0, 3, 0, 8, 0, 8, 0, 1, 16, 0, 20, 0, 5, 0, 32, 0, 48, 0, 18, 0, 1, 64, 0, 112, 0, 56, 0, 7, 0, 128, 0, 256, 0, 160, 0, 32, 0, 1, 256, 0, 576, 0, 432, 0, 120, 0, 9, 0, 512, 0, 1280, 0, 1120, 0, 400, 0, 50, 0, 1, 1024, 0, 2816, 0, 2816, 0, 1232, 0, 220
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Unsigned Chebyshev numbers of the first kind. Columns include A011782, A001792, A001793, A001794, A006974.
For the Riordan coefficient triangle for Chebyshev's T-polynomials (decreasing odd or even powers of x) see A039991. - Wolfdieter Lang, Aug 06 2014

Examples

			Triangle rows are {1}, {1,0}, {2,0,1}, {4,0,3,0}, {8,0,8,0,1},.... [Corrected by _Philippe Deléham_, Dec 27 2007]
See the unsigned example under A039991. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Cf. A008310, A039991 (signed).

Formula

T(n,k) = [x^k] a(n,x), k = 0, 1, ..., n, with polynomial a(n,x) defined by the recurrence given as name. Its Binet-de Moivre form is a(n, x) = ((1+sqrt(x^2+1))^n + (1-sqrt(x^2+1))^n)/2.
O.g.f. for row polynomials a(n,x): (1-z)/(1 - 2*z - (x*z)^2). Compare with A039991.

Extensions

Edited. Name and formula clarified. G.f. of row polynomial, and crossref. A039991 added. - Wolfdieter Lang, Aug 06 2014

A124932 Triangle read by rows: T(n,k) = k*(k+1)*binomial(n,k)/2 (1 <= k <= n).

Original entry on oeis.org

1, 2, 3, 3, 9, 6, 4, 18, 24, 10, 5, 30, 60, 50, 15, 6, 45, 120, 150, 90, 21, 7, 63, 210, 350, 315, 147, 28, 8, 84, 336, 700, 840, 588, 224, 36, 9, 108, 504, 1260, 1890, 1764, 1008, 324, 45, 10, 135, 720, 2100, 3780, 4410, 3360, 1620, 450, 55
Offset: 1

Views

Author

Gary W. Adamson, Nov 12 2006

Keywords

Comments

Row sums = A001793: (1, 5, 18, 56, 160, 432, ...).
Triangle is P*M, where P is the Pascal triangle as an infinite lower triangular matrix and M is an infinite bidiagonal matrix with (1,3,6,10,...) in the main diagonal and in the subdiagonal.
This number triangle can be used as a control sequence when listing combinations of subsets as in Pascals triangle by assigning a number to each element that corresponds to the n:th subset that the element belongs to. One then gets number blocks whose sums are the terms in this number triangle. - Mats Granvik, Jan 14 2009

Examples

			First few rows of the triangle:
  1;
  2,   3;
  3,   9,   6;
  4,  18,  24,  10;
  5,  30,  60,  50,  15;
  6,  45, 120, 150,  90,  21;
  7,  63, 210, 350, 315, 147,  28;
  ...
From _Mats Granvik_, Dec 18 2009: (Start)
The numbers in this triangle are sums of the following recursive number blocks:
1................................
.................................
11.....12........................
.................................
111....112....123................
.......122.......................
.................................
1111...1112...1123...1234........
.......1122...1223...............
.......1222...1233...............
.................................
11111..11112..11123..11234..12345
.......11122..11223..12234.......
.......11222..12223..12334.......
.......12222..11233..12344.......
..............12233..............
..............12333..............
.................................
(End)
		

Crossrefs

Cf. A001793.

Programs

  • GAP
    B:=Binomial;; Flat(List([1..12], n-> List([1..n], k-> B(k+1,2)* B(n,k) ))); # G. C. Greubel, Nov 19 2019
  • Magma
    B:=Binomial; [B(k+1,2)*B(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019
    
  • Maple
    T:=(n,k)->k*(k+1)*binomial(n,k)/2: for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Binomial[k + 1, 2]*Binomial[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
  • PARI
    T(n,k) = binomial(k+1,2)*binomial(n,k); \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    b=binomial; [[b(k+1,2)*b(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019
    

Formula

T(n,k) = binomial(k+1,2)*binomial(n,k). - G. C. Greubel, Nov 19 2019

Extensions

Edited by N. J. A. Sloane, Nov 24 2006

A125092 Triangle read by rows: T(n,k) = (k+1)^2*binomial(n,k) (0 <= k <= n).

Original entry on oeis.org

1, 1, 4, 1, 8, 9, 1, 12, 27, 16, 1, 16, 54, 64, 25, 1, 20, 90, 160, 125, 36, 1, 24, 135, 320, 375, 216, 49, 1, 28, 189, 560, 875, 756, 343, 64, 1, 32, 252, 896, 1750, 2016, 1372, 512, 81, 1, 36, 324, 1344, 3150, 4536, 4116, 2304, 729, 100, 1, 40, 405, 1920, 5250, 9072
Offset: 0

Views

Author

Gary W. Adamson, Nov 19 2006

Keywords

Comments

Binomial transform of the infinite diagonal matrix (1,4,9,16,...).
Sum of entries in row n = (n+1)*(n+4)*2^(n-2) = A001793(n+1).

Examples

			First few rows of the triangle:
  1;
  1,   4;
  1,   8,   9;
  1,  12,  27,  16;
  1,  16,  54,  64,  25;
  1,  20,  90, 160, 125,  36;
  ...
		

Crossrefs

Cf. A001793.

Programs

  • Maple
    T:=(n,k)->(k+1)^2*binomial(n,k): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[(k+1)^2 Binomial[n,k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Feb 20 2023 *)

Extensions

Edited by N. J. A. Sloane, Nov 29 2006

A135294 a(n) = 3*a(n-1)+n if a(n-1) is not divisible by 2, or a(n) = a(n-1)/2 otherwise.

Original entry on oeis.org

1, 4, 2, 1, 7, 26, 13, 46, 23, 78, 39, 128, 64, 32, 16, 8, 4, 2, 1, 22, 11, 54, 27, 104, 52, 26, 13, 66, 33, 128, 64, 32, 16, 8, 4, 2, 1, 40, 20, 10, 5, 56, 28, 14, 7, 66, 33, 146, 73, 268, 134, 67, 253, 812, 406, 203, 665, 2052, 1026, 513, 1599, 4858, 2429, 7350, 3675, 11090, 5545, 16702, 8351, 25122, 12561
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 04 2007

Keywords

Comments

a(n)=a(0)*(3^(n-i))/(2^i) + c where c is in the range (0..sum(i*3^(n-i))). Sum(i*3^(n-i)) for i=1 to n equals A001793 (coefficients of Chebyshev polynomials). Max a(n) = 3^n*(a(0)/3^i*2^i + 9/4) - ((2*n+5)/4) which for large n gives max a(n) ~ 2.25*3^n - n/2. - Ctibor O. Zizka, Dec 26 2007

Crossrefs

Cf. A135287.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[OddQ[a],3a+n,a/2]}; NestList[nxt,{1,1},70][[;;,2]] (* Harvey P. Dale, Oct 01 2024 *)

Extensions

Corrected and extended by Harvey P. Dale, Oct 01 2024

A273717 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k L-shaped corners (n>=2, k>=0).

Original entry on oeis.org

1, 2, 4, 1, 8, 5, 16, 18, 1, 32, 56, 9, 64, 160, 50, 1, 128, 432, 220, 14, 256, 1120, 840, 110, 1, 512, 2816, 2912, 645, 20, 1024, 6912, 9408, 3150, 210, 1, 2048, 16640, 28800, 13552, 1575, 27, 4096, 39424, 84480, 53088, 9534, 364, 1, 8192, 92160, 239360, 193440, 49644, 3388, 35, 16384, 212992, 658944, 665280, 231000, 24822, 588
Offset: 2

Views

Author

Emeric Deutsch, May 29 2016

Keywords

Comments

Each L-shaped corner can be viewed as a descent (as defined in Sec. 5.1 of the Blecher et al. reference). - Emeric Deutsch, Jul 02 2016

Examples

			Row 4 is 4,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] of which only [2,1] yields a |_ - shaped corner.
Triangle starts:
  1;
  2;
  4,1;
  8,5;
  16,18,1.
		

References

  • A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).

Crossrefs

Sum of entries in row n = A082582(n).

Programs

  • Maple
    eq := t*z*G^2-(1-2*z-t*z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(
          `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1))+
          `if`(t>0 or y<2, 0, b(n, y-1, -1))+
          `if`(y<1, 0, b(n-1, y, 0)*`if`(t<0, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=2..18);  # Alois P. Heinz, Jun 06 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*If[t < 0, z, 1]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 18}] // Flatten (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)

Formula

G.f.: G = G(t,z) satisfies t*z*G^2 - (1 - 2*z - t*z^2)*G + z^2 = 0.
Sum_{k>=1} k*T(n,k) = A273718(n).
T(n,0) = 2^(n-2).
T(n,1) = n*(n-3)*2^(n-6) = A001793(n-3) for n>=4.

A320905 T(n, k) = binomial(2*n - 1 - k, k - 1)*hypergeom([2, 2, 1-k], [1, 1 - 2*k + 2*n], -1), triangle read by rows, T(n, k) for n >= 1 and 1 <= k <= n.

Original entry on oeis.org

1, 1, 5, 1, 7, 18, 1, 9, 31, 56, 1, 11, 48, 111, 160, 1, 13, 69, 198, 351, 432, 1, 15, 94, 325, 699, 1023, 1120, 1, 17, 123, 500, 1280, 2223, 2815, 2816, 1, 19, 156, 731, 2186, 4458, 6562, 7423, 6912, 1, 21, 193, 1026, 3525, 8330, 14198, 18324, 18943, 16640
Offset: 1

Views

Author

Peter Luschny, Oct 28 2018

Keywords

Examples

			Triangle starts:
[1] 1
[2] 1,  5
[3] 1,  7,  18
[4] 1,  9,  31,  56
[5] 1, 11,  48, 111,  160
[6] 1, 13,  69, 198,  351,  432
[7] 1, 15,  94, 325,  699, 1023, 1120
[8] 1, 17, 123, 500, 1280, 2223, 2815, 2816
[9] 1, 19, 156, 731, 2186, 4458, 6562, 7423, 6912
		

Crossrefs

Row sums with shifted indices in A318947.
T(n, n) = A001793(n).

Programs

  • Maple
    T := (n, k) -> binomial(2*n-1-k,k-1)*hypergeom([2,2,1-k], [1,1-2*k+2*n], -1):
    seq(seq(simplify(T(n, k)), k=1..n), n=1..10);
  • Mathematica
    T[n_, k_] := Sum[Binomial[2*n-k, 2*n-2*k+1+j]*Binomial[j+2, 2],{j, 0, 2*n-k}]; Flatten[Table[T[n, k], {n, 1, 10}, {k, 1, n}]] (* Detlef Meya, Dec 31 2023 *)
  • PARI
    T(n, k) = {sum(j=0, 2*n-k, binomial(2*n-k, 2*n - 2*k + 1 + j) * binomial(j+2, 2))} \\ Andrew Howroyd, Dec 31 2023
    
  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k < 1 or n < 1: return 0
        if k == 1: return 1
        if k == n: return n * (n + 3) * 2**(n - 3)
        return T(n-1, k) + 2*T(n-1, k-1) - T(n-2, k-2)
    for n in range(1, 10): print([T(n, k) for k in range(1, n+1)])
    # after Detlef Meya, Peter Luschny, Jan 01 2024

Formula

T(n, k) = Sum_{j=0..2*n-k} binomial(2*n-k, 2*n - 2*k + 1 + j)*binomial(j+2, 2). - Detlef Meya, Dec 31 2023

A344084 Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Examples

			The sets are the columns below:
  1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
      2   3 3 2   4 4 4 2 3 3 2   5 5 5 5 2 3 4 3 4 4 2
              3         4 4 4 3           5 5 5 5 5 5 3
                              4                       5
As a tetrangle, the first four triangles are:
  {1}
  {2},{1,2}
  {3},{1,3},{2,3},{1,2,3}
  {4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
		

Crossrefs

Triangle lengths are A000079.
Triangle sums are A001793.
Positions of first appearances are A005183.
Set maxima are A070939.
Set lengths are A124736.

Programs

  • Mathematica
    SortBy[Rest[Subsets[Range[5]]],Last]

A069515 Number of transpositions (interchanges of adjacent digits, sometimes called inversions) needed to change all n-digit base 3 numbers into nondecreasing order.

Original entry on oeis.org

0, 3, 24, 135, 648, 2835, 11664, 45927, 174960, 649539, 2361960, 8444007, 29760696, 103630995, 357128352, 1219657095, 4132485216, 13904090883, 46490458680, 154580775111, 511395045480, 1684116865683, 5523066491184
Offset: 1

Views

Author

John W. Layman, Apr 16 2002

Keywords

Comments

The corresponding problem for base 2 numbers gives a(n)=A001793(n-1) for n=2,3,4,....

Examples

			The base 3 number 1210 requires 4 transpositions: 1210->1201->1021->0121->0112.
		

Crossrefs

Cf. A064017.

Programs

  • Mathematica
    LinearRecurrence[{9, -27, 27}, {0, 3, 24}, 50] (* Paolo Xausa, Mar 18 2024 *)
    nxt[{n_,a_}]:={n+1,3a+(2n+1)3^(n-1)}; NestList[nxt,{1,0},30][[;;,2]] (* Harvey P. Dale, Aug 23 2024 *)

Formula

a(n) = 3a(n-1)+(2n-1)3^(n-2).
a(n) = (n-1)(n+1)3^(n-2). - Ralf Stephan, Sep 02 2003
G.f.: 3*x^2*(1-x)/(1-3*x)^3. - Colin Barker, May 01 2012

Extensions

Corrected by T. D. Noe, Nov 01 2006
Previous Showing 31-40 of 54 results. Next