A121486 Number of peaks at even level in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
0, 1, 4, 13, 43, 132, 400, 1184, 3461, 9999, 28634, 81383, 229860, 645731, 1805582, 5028189, 13952221, 38590922, 106434540, 292792026, 803565215, 2200694791, 6015268164, 16412564173, 44708036568, 121600924117, 330277253560
Offset: 1
Keywords
Examples
a(3)=4 because in UDUDUD, UDUU|DD, UU|DDUD, UU|DU|DD and UUUDDD we have altogether 4 peaks at even level (shown by a |); here U=(1,1) and D=(1,-1).
Links
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
- Index entries for linear recurrences with constant coefficients, signature (6,-9,-5,15,-1,-4,1).
Programs
-
Maple
G:=z^2*(1-z)*(1-z-3*z^2+3*z^3-z^4)/(1+z)/(1-z-z^2)/(1-3*z+z^2)^2: Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=1..30);
-
Mathematica
Rest[CoefficientList[Series[x^2*(1-x)*(1-x-3*x^2+3*x^3-x^4)/(1+x)/(1-x-x^2)/(1-3*x+x^2)^2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
Formula
a(n) = Sum(k*A121484(n,k),k=0..n-1).
G.f.: z^2*(1-z)(1-z-3z^2+3z^3-z^4)/[(1+z)(1-z-z^2)(1-3z+z^2)^2].
a(n) ~ (sqrt(5)-1) * (3+sqrt(5))^n * n / (5 * 2^(n+2)). - Vaclav Kotesovec, Mar 20 2014
Comments