cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A288953 Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except after the last branch node on level 0.

Original entry on oeis.org

1, 1, 3, 10, 51, 280, 1995, 15120, 138075, 1330560, 14812875, 172972800, 2271359475, 31135104000, 471038042475, 7410154752000, 126906349444875, 2252687044608000, 43078308695296875, 851515702861824000, 17984171447178811875, 391697223316439040000
Offset: 0

Views

Author

Michael Wallner, Jun 20 2017

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. A branch node is a node with a left and right edge (no pointer). See the Genitrini et al. link. - Michael Wallner, Apr 20 2017
a(n) is the number of plane increasing trees with n+1 nodes where in the growth process induced by the labels maximal young leaves and non-maximal young leaves alternate except for a sequence of maximal young leaves at the beginning. A young leaf is a leaf with no left sibling. A maximal young leaf is a young leaf with maximal label. See the Wallner link. - Michael Wallner, Apr 20 2017

Examples

			Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
  L-o-o-o-o-o-o-o-o
          | | | | |
          o o o o o.
For n=0 the a(0)=1 solution is L.
For n=1 the a(1)=1 solution is L-o.
For n=2 the a(2)=3 solutions are
L-o-o     L-o
            |
            o
  2    +   1    solutions of this shape with pointers.
		

Crossrefs

Cf. A288954 (variation with additional initial sequence).
Cf. A177145 (variation without final sequence).
Cf. A001147 (relaxed compacted binary trees of right height at most one).
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of relaxed compacted binary trees of right height at most one, see the Wallner link).

Formula

E.g.f.: (2-z)/(3*(1-z)^2) + 1/(3*sqrt(1-z^2)).

A288954 Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except before the first and after the last branch node on level 0.

Original entry on oeis.org

1, 1, 3, 13, 79, 555, 4605, 42315, 436275, 4894155, 60125625, 794437875, 11325612375, 172141044075, 2793834368325, 48009995908875, 874143494098875, 16757439016192875, 338309837281040625, 7157757510792763875, 158706419654857449375, 3673441093896736036875
Offset: 2

Views

Author

Michael Wallner, Jun 20 2017

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. A branch node is a node with a left and right edge (no pointer). See the Genitrini et al. link. - Michael Wallner, Apr 20 2017
a(n) is the number of plane increasing trees with n+1 nodes where in the growth process induced by the labels a maximal young leaves and non-maximal young leaves alternate except for a sequence of maximal young leaves at the begininning and at the end. A young leaf is a leaf with no left sibling. A maximal young leaf is a young leaf with maximal label. See the Wallner link. - Michael Wallner, Apr 20 2017

Examples

			See A288950 and A288953.
		

Crossrefs

Cf. A288953 (variation without initial sequence).
Cf. A177145 (variation without initial and final sequence).
Cf. A001147 (relaxed compacted binary trees of right height at most one).
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of relaxed compacted binary trees of right height at most one, see the Wallner link).

Programs

  • Mathematica
    terms = 22; egf = 1/(3(1-z))(1/Sqrt[1-z^2] + (3z^3 - z^2 - 2z + 2)/((1-z)(1-z^2))) + O[z]^terms;
    CoefficientList[egf, z] Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)

Formula

E.g.f.: 1/(3*(1-z))*( 1/sqrt(1-z^2) + (3*z^3-z^2-2*z+2)/((1-z)*(1-z^2)) ).

A359760 Triangle read by rows. The Kummer triangle, the coefficients of the Kummer polynomials. K(n, k) = binomial(n, k) * oddfactorial(k/2) if k is even, otherwise 0, where oddfactorial(z) := (2*z)!/(2^z*z!).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 3, 1, 0, 10, 0, 15, 0, 1, 0, 15, 0, 45, 0, 15, 1, 0, 21, 0, 105, 0, 105, 0, 1, 0, 28, 0, 210, 0, 420, 0, 105, 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0, 1, 0, 45, 0, 630, 0, 3150, 0, 4725, 0, 945, 1, 0, 55, 0, 990, 0, 6930, 0, 17325, 0, 10395, 0
Offset: 0

Views

Author

Peter Luschny, Jan 13 2023

Keywords

Comments

The Kummer numbers K(n, k) are a refinement of the oddfactorial numbers (A001147) in the sense that they are the coefficients of polynomials K(n, x) = Sum_{n..k} K(n, k) * x^k that take the value oddfactorial(n) at x = 1. The coefficients of x^n are the aerated oddfactorial numbers A123023.
These numbers appear in many different versions (see the crossrefs). They are the coefficients of the Chebyshev-Hermite polynomials in signed form when ordered in decreasing powers. Our exposition is based on the seminal paper by Kummer, which preceded the work of Chebyshev and Hermite for more than 20 years. They are also referred to as Bessel numbers of the second kind (Mansour et al.) when the odd powers are omitted.

Examples

			Triangle K(n, k) starts:
 [0] 1;
 [1] 1, 0;
 [2] 1, 0,  1;
 [3] 1, 0,  3, 0;
 [4] 1, 0,  6, 0,   3;
 [5] 1, 0, 10, 0,  15, 0;
 [6] 1, 0, 15, 0,  45, 0,   15;
 [7] 1, 0, 21, 0, 105, 0,  105, 0;
 [8] 1, 0, 28, 0, 210, 0,  420, 0, 105;
 [9] 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0;
		

References

  • John Riordan, Introduction to Combinatorial Analysis, Dover (2002), pp. 85-86.

Crossrefs

Variants: Signed version: A073278. Other variants are the irregular triangle A100861 with zeros deleted, A066325 and A099174 with reversed rows, A111924, A144299, A104556.

Programs

  • Maple
    oddfactorial := proc(z) (2*z)! / (2^z*z!) end:
    K := (n, k) -> ifelse(irem(k, 2) = 1, 0, binomial(n, k) * oddfactorial(k/2)):
    seq(seq(K(n, k), k = 0..n), n = 0..11);
    # Alternative, as coefficients of polynomials:
    p := (n, x) -> 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)):
    seq(print(seq(coeff(simplify(p(n, x)), x, k), k = 0..n)), n = 0 ..9);
    # Using the exponential generating function:
    egf := exp(x + (t*x)^2 / 2): ser := series(egf, x, 12):
    seq(print(seq(coeff(n! * coeff(ser, x, n), t, k), k = 0..n)), n = 0..9);
  • Mathematica
    K[n_, k_] := K[n, k] = Which[OddQ[k], 0, k == 0, 1, n == k, K[n - 1, n - 2], True, K[n - 1, k] n/(n - k)];
    Table[K[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
  • Python
    from functools import cache
    @cache
    def K(n: int, k: int) -> int:
        if k %  2: return 0
        if n <  3: return 1
        if n == k: return K(n - 1, n - 2)
        return (K(n - 1, k) * n) // (n - k)
    for n in range(10): print([K(n, k) for k in range(n + 1)])

Formula

Let p(n, x) = 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)).
p(n, 1) = A000085(n); p(n, sqrt(2)) = A047974(n); p(n, 2) = A115329(n);
p(2, n) = A002522(n) (n >= 1); p(3, n) = A056107(n) (n >= 1);
p(n, n) = A359739(n) (n >= 1); 2^n*p(n, 1/2) = A005425(n).
K(n, k) = [x^k] p(n, x).
K(n, k) = [t^k] (n! * [x^n] exp(x + (t*x)^2 / 2)).
K(n, n) = A123023(n).
K(n, n-1) = A123023(n + 1).
K(2*n, 2*n) = A001147(n).
K(4*n, 2*n) = A359761, the central terms without zeros.
K(2*n+2, 2*n) = A001879.
Sum_{k=0..n} (-1)^n * i^k * K(n, k) = A001464(n), ((the number of even involutions) - (the number of odd involutions) in the symmetric group S_n (Robert Israel)).
Sum_{k=0..n} Sum_{j=0..k} K(n, j) = A000085(n + 1).
For a recursion see the Python program.

A227528 a(n) = numerator of r(n) = 2*(3*n+2)!/((2*n)!*2^n), n>=0.

Original entry on oeis.org

4, 60, 840, 13860, 270270, 6126120, 158722200, 4633467300, 150587687250, 5394582443250, 211240491462000, 8977720887135000, 411608985890602500, 20251162105817643000, 1064311075116860571000, 59509669251792738478500, 3527387653231263127556250, 220942735734212754080568750
Offset: 0

Views

Author

Karol A. Penson, Jul 14 2013

Keywords

Comments

The first values with denominators > 1 occur at n = {84, 148, 164, 168, 169, 276, 292, 296, 297, ...}. - G. C. Greubel, Jul 04 2017

Crossrefs

Cf. A001879.

Programs

  • Maple
    seq(numer(4*(3*n+2)!/((2*n)!*2^(n+1))), n=0..14);
  • Mathematica
    Table[Numerator[2(3n + 2)!/((2n)! 2^n)], {n, 0, 84}]  (* G. C. Greubel, Jul 04 2017 *)
  • PARI
    for(n=0,50, print1(numerator(2*(3*n + 2)!/((2*n)!*2^n)), ", ")) \\ G. C. Greubel, Jul 04 2017

Formula

In Maple notation,
E.g.f. of r: ((135/8)*z+4)*cos((2/3)*arcsin((3/4)*sqrt(6)*sqrt(z)))/(1-(27/8)*z)^2+(3/8)*sqrt(z)*((135/4)*z+17)*sin((2/3)*arcsin((3/4)*sqrt(6)*sqrt(z)))*sqrt(6)/(1-(27/8)*z)^(5/2).
E.g.f. of r: 4*hypergeom([4/3,5/3],[1/2],27*z/8).
Integral representation as n-th moment of a signed function w(x) of bounded variation on (0,infinity),
w(x)=(8/3)*sqrt(3)*((1/36) *(128*x^2/81-40*x/3+20) *exp(-4*x/27) *BesselK(1/3,(4/27)*x)/Pi +(2/81)*x *(-5+16*x/9) *exp(-4*x/27) *BesselK(4/3,4*x/27)/Pi);
w(x)=-(14/243)*16^(2/3)*x^(2/3)*3 *hypergeom([13/6], [4/3], -(8/27)*x)/GAMMA(2/3)-(10/243)*sqrt(3)*16^(1/3)*x^(1/3)*9*GAMMA(2/3)*hypergeom([11/6], [2/3], -(8/27)*x)/Pi.
For x>3.32, w(x)>0.
w(0)=w(3.32)=limit(w(x),x=infinity)=0.
For x<3.32, w(x)<0.
r(n) = int(x^n*w(x), x=0..infinity), n>=0.
Asymptotics: r(n)->(1/1152)*sqrt(6)*(10368*n^2+10224*n+2161)*(27/8)^n*exp(-n)*(n^n), for n->infinity.
The rational values are given by 4*(-2*n+1)*r(n) + 3*(3*n+2)*(3*n+1) * r(n-1)=0. - R. J. Mathar, Jul 20 2013

Extensions

Erroneous definition corrected by G. C. Greubel, Jul 04 2017

A261065 Second column of A086872.

Original entry on oeis.org

1, 8, 75, 840, 11025, 166320, 2837835, 54054000, 1137161025, 26189163000, 655383804075, 17709112020600, 513880482740625, 15938200818540000, 526174085058496875, 18422283260401020000, 681816379418800250625, 26597171457203972625000, 1090705672840839577396875
Offset: 1

Views

Author

R. J. Mathar, Aug 08 2015

Keywords

Crossrefs

Cf. A086872.

Formula

(n-1)*(n+1)*a(n) -n*(n+2)*(2*n-1)*a(n-1)=0.
G.f. x*3F1(3/2,4,2; 3; 2x).
a(n) = A001879(n-1)+2*A001880(n+2).

A334823 Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).

Original entry on oeis.org

1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1
Offset: 0

Views

Author

G. C. Greubel, May 12 2020, following a suggestion from Michel Marcus

Keywords

Comments

Lambert's numerator polynomials related to convergents of tan(x), g(n, x), are given in A334824.

Examples

			Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
        1;
        1, 0;
        3, 0,      -1;
       15, 0,      -6, 0;
      105, 0,     -45, 0,     1;
      945, 0,    -420, 0,    15, 0;
    10395, 0,   -4725, 0,   210, 0,   -1;
   135135, 0,  -62370, 0,  3150, 0,  -28, 0;
  2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
		

Crossrefs

Columns k: A001147 (k=0), A001879 (k=2), A001880 (k=4), A038121 (k=6).

Programs

  • Magma
    C := ComplexField();
    T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
    [T(n,k): k in [0..n], n in [0..10]];
    
  • Maple
    T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
    seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
  • Mathematica
    (* First program *)
    y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
    f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
    Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
    (* Second program *)
    Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
  • Sage
    [[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]

Formula

Equals the coefficients of the polynomials, f(n, x), defined by: (Start)
f(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k)!/((2*k)!*(n-2*k)!))*(x/2)^(n-2*k).
f(n, x) = ((2*n)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 1/2, -n, -n+1/2; -1/x^2).
f(n, x) = ((-i)^n/2)*(y(n, i*x) + (-1)^n*y(n, -i*x)), where y(n, x) are the Bessel Polynomials.
f(n, x) = (2*n-1)*x*f(n-1, x) - f(n-2, x).
E.g.f. of f(n, x): cos((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
f(n, 1) = (-1)^n*f(n, -1) = A053983(n) = (-1)^(n+1)*A053984(-n-1) = (-1)^(n+1) * g(-n-1, 1).
f(n, 2) = (-1)^n*f(n, -2) = A053988(n+1). (End)
As a number triangle:
T(n, k) = i^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), where i = sqrt(-1).
T(n, 0) = A001147(n).

A227624 a(n) = numerator of r(n), where r(n) = (4*n+2)!/((3*n)!*2^n).

Original entry on oeis.org

2, 60, 1260, 30030, 835380, 26860680, 984233250, 40560770250, 1858741384500, 93814013878200, 5172710627284200, 309424040950649625, 19960884210345828750, 1381474908065669917500, 102111212412024699633750, 8028503070893011778321250
Offset: 0

Author

Karol A. Penson, Jul 18 2013

Keywords

Comments

The first values with denominators > 1 occur at n = (43, 86, 87, 91, 107, 171, 172, ...). - G. C. Greubel, Jul 04 2017

Crossrefs

Programs

  • Maple
    seq(numer(2*(4*n+2)!/((3*n)!*2^(n+1)), n=0..15)
  • Mathematica
    Table[(4 n + 2)!/((3 n)!*2^n), {n, 0, 15}] (* Michael De Vlieger, Oct 08 2016 *)(* generates values of r(n) *)
    Table[Numerator[(4*n + 2)!/((3*n)! *2^n)], {n, 0, 50}] (* G. C. Greubel, Jul 04 2017 *)
  • PARI
    for(n=0,50, print1(numerator((4*n + 2)!/((3*n)! *2^n)), ", ")) \\ G. C. Greubel, Jul 05 2017

Formula

In Maple notation,
E.g.f. of r(n): 2*hypergeom([3/4, 5/4, 3/2], [1/3, 2/3], (128/27)*z).
Integral representation as n-th moment of a signed function w(x) of bounded variation on (0,infinity),
w(x) = (5/64)*2^(3/4)*hypergeom([13/12, 17/12], [1/4, 1/2], -(27/128)*x)/(GAMMA(3/4)*x^(1/4))-(231/512)*2^(3/4)*GAMMA(3/4)*x^(1/4)*hypergeom([19/12, 23/12], [3/4, 3/2], -(27/128)*x)/Pi-(35/64)*sqrt(2)*sqrt(x)*hypergeom([11/6, 13/6], [5/4, 7/4], -(27/128)*x)/sqrt(Pi);
For x>5.723, w(x)>0.
w(0)=w(5.723)=limit(w(x),x=infinity)=0.
For x<5.723, w(x)<0.
r(n) = int(x^n*w(x), x=0..infinity), n>=0.
Asymptotics: r(n)-> (1/3888)*sqrt(3)*(41472*n^2+30816*n+4969)*(128/27)^n*exp(-n)*(n)^(n), for n->infinity.
3*(3*n-1)*(3*n-2)*r(n) -4*(4*n+1)*(2*n+1)*(4*n-1)*r(n-1)=0. - R. J. Mathar, Oct 08 2016

A316666 Number of simple relaxed compacted binary trees of right height at most one with no sequences on level 1 and no final sequences on level 0.

Original entry on oeis.org

1, 0, 1, 3, 15, 87, 597, 4701, 41787, 413691, 4512993, 53779833, 695000919, 9680369943, 144560191149, 2303928046437, 39031251610227, 700394126116851, 13270625547477177, 264748979672169681, 5547121478845459983, 121784530649198053263, 2795749225338111831429, 66981491857058929294653
Offset: 0

Author

Michael Wallner, Jul 10 2018

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and at most n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. It is called simple if for nodes with two pointers both point to the same node. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. See the Wallner link.
a(n) is one of two "basis" sequences for sequences of the form a(0)=a, a(1)=b, a(n) = n*a(n-1) + (n-1)*a(n-2), the second basis sequence being A096654 (with 0 appended as a(0)). The sum of these sequences is listed as A000255. - Gary Detlefs, Dec 11 2018

Crossrefs

Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288953 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of simple relaxed compacted binary trees of right height at most one, see the Wallner link).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3*Exp(-x) + x-2)/(1-x)^2 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 12 2018
  • Maple
    aseq := n-> 3*round((n+2)*n!/exp(1))-(n+2)*n!: bseq := n-> (n+2)*n!- 2* round((n+2)*n!/exp(1)): s := (a,b,n)-> a*aseq(n) + b*bseq( n): seq(s(1,0,n),n = 0..20);  # Gary Detlefs, Dec 11 2018
  • Mathematica
    terms = 24;
    CoefficientList[(3E^-z+z-2)/(1-z)^2 + O[z]^terms, z] Range[0, terms-1]! (* Jean-François Alcover, Sep 14 2018 *)
  • PARI
    Vec(serlaplace((3*exp(-x + O(x^25)) + x - 2)/(1 - x)^2)) \\ Andrew Howroyd, Jul 10 2018
    

Formula

E.g.f.: (3*exp(-z)+z-2)/(1-z)^2.
a(n) ~ (3*exp(-1) - 1) * n * n!. - Vaclav Kotesovec, Jul 12 2018
a(n) = 3*round((n+2)*n!/e) - (n+2)*n!. - Gary Detlefs, Dec 11 2018
From Seiichi Manyama, Apr 25 2025: (Start)
a(n) = 3 * A000255(n) - n! - (n+1)!.
a(0) = 1, a(1) = 0; a(n) = n*a(n-1) + (n-1)*a(n-2). (End)

A363935 Triangle of coefficients of the primitive Eulerian polynomials of type D T(n,k) (n >= 2, 1 <= k <= n) read by rows.

Original entry on oeis.org

0, 1, 1, 4, 1, 4, 20, 20, 1, 11, 116, 216, 76, 1, 26, 632, 2072, 1732, 262, 1, 57, 3158, 18404, 28064, 11824, 862, 1, 120, 14800, 151104, 386640, 317200, 73320, 2760, 1, 247, 66424, 1158040, 4777264, 6608800, 3169168, 427576, 8680, 1
Offset: 2

Author

Jose Bastidas, Jun 28 2023

Keywords

Comments

Row n counts even signed permutations w in D_n such that (i.) w(1) != -n and (ii.) all right-to-left maxima of |w| are negative in w, by their type D descent number. For example, T(3,2) = 4 counts the signed permutations (1,-3,-2), (-2,1,-3), (2,-1,-3), (2,-3,-1).

Examples

			    0,     1;
    1,     4,      1;
    4,    20,     20,      1;
   11,   116,    216,     76,      1;
   26,   632,   2072,   1732,    262,     1;
   57,  3158,  18404,  28064,  11824,   862,    1;
  120, 14800, 151104, 386640, 317200, 73320, 2760, 1;
  ...
		

Crossrefs

Row sums are A001879(n-2).

A161127 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k descents (n>=1; 1<=k<2n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 3, 1, 1, 6, 27, 37, 27, 6, 1, 1, 10, 76, 220, 331, 220, 76, 10, 1, 1, 15, 176, 897, 2438, 3341, 2438, 897, 176, 15, 1, 1, 21, 357, 2885, 12825, 30807, 41343, 30807, 12825, 2885, 357, 21, 1, 1, 28, 658, 7871, 53312, 203927, 452931, 589569
Offset: 1

Author

Emeric Deutsch, Jun 09 2009

Keywords

Comments

Row n contains 2n-1 entries.
Sum of entries in row n = (2n-1)!! = A001147(n).
Sum_{k=1..2n-1} k*T(n,k) = A001879(n-1).

Examples

			T(3,2)=3 because we have 215634, 341265, and 351624.
Triangle starts:
  1;
  1,1,1;
  1,3,7,3,1;
  1,6,27,37,27,6,1;
  1,10,76,220,331,220,76,10,1;
  ...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k <= 0 or n <= 0 then 0 elif n = 1 and k = 1 then 1 elif 2*n <= k then 0 else ((1/2)*(k*(k+1)+2*n-2)*T(n-1, k)+(1/2)*(2*(k-1)*(2*n-k-1)+2)*T(n-1, k-1)+(1/2)*((2*n-k)*(2*n-k+1)+2*n-2)*T(n-1, k-2))/n end if end proc: for n to 8 do seq(T(n, k), k = 1 .. 2*n-1) end do; # end of program
    for n to 8 do P[n] := sort(expand(simplify((1-t)^(2*n+1)*(sum(binomial((1/2)*i*(i+1)+n-1, n)*t^i, i = 0 .. infinity))))) end do: for n to 8 do seq(coeff(P[n], t, j), j = 1 .. 2*n-1) end do; # end of program
  • Mathematica
    T[n_, k_] := Which[k <= 0 || n <= 0, 0, n == 1 && k == 1, 1, 2n <= k, 0, True, ((1/2)*(k*(k + 1) + 2n - 2)*T[n - 1, k] + (1/2)*(2*(k - 1)*(2n - k - 1) + 2)*T[n - 1, k - 1] + (1/2)*((2n - k)*(2n - k + 1) + 2n - 2)*T[n - 1, k - 2])/n];
    Table[T[n, k], {n, 1, 8}, {k, 1, 2n - 1}] // Flatten (* Jean-François Alcover, Sep 05 2024, after first Maple program *)

Formula

Recurrence: 2nT(n,k) = [k(k+1)+2n-2]T(n-1,k)+2[(k-1)(2n-k-1)+1]T(n-1,k-1)+[(2n-k)(2n-k+1)+2n-2]T(n-1,k-2) (k>=1, n>=2) (see Eq. (2.1) in the Guo-Zeng paper; see first Maple program).
Generating polynomial of row n is P(n,t) = (1 - t)^{2n+1}*Sum(C(j(j+1)/2 + n - 1, n)*t^j, j=0..oo) (see Eq. (2.2) in the Guo-Zeng paper; see 2nd Maple program).
Previous Showing 11-20 of 21 results. Next