cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A002644 Numbers k such that (k^2 + k + 1)/21 is prime.

Original entry on oeis.org

16, 25, 37, 46, 58, 88, 109, 130, 142, 151, 184, 193, 205, 247, 268, 298, 310, 319, 331, 340, 382, 394, 403, 415, 424, 457, 478, 487, 541, 550, 604, 613, 688, 697, 709, 730, 739, 751, 760, 793, 844, 865, 886, 907, 970, 1012, 1045, 1054, 1066, 1117, 1138
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 21 2000

A002650 Quintan primes: p = (x^5 + y^5)/(x + y).

Original entry on oeis.org

11, 61, 181, 421, 461, 521, 991, 1621, 1871, 3001, 4441, 4621, 6871, 9091, 9931, 12391, 13421, 14821, 19141, 25951, 35281, 35401, 55201, 58321, 61681, 62071, 72931, 74731, 91331, 92921, 95881, 108421, 117911, 117991, 131041, 132661, 141961
Offset: 1

Views

Author

Keywords

Comments

(x^5 + y^5)/(x + y) = x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4. - Jens Kruse Andersen, Jul 14 2014

Examples

			(3^5 + 1^5)/(3 + 1) = 61. This is prime and therefore in the sequence. - _Jens Kruse Andersen_, Jul 14 2014
		

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 2, p. 201.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002649.

Programs

  • Mathematica
    Take[Select[Union[(#[[1]]^5+#[[2]]^5)/Total[#]&/@Tuples[Range[200],2]], #>0&& PrimeQ[#]&],50] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    m=10^6; v=[]; for(x=1, (2*m)^(1/4), for(y=1, x, n=(x^5+y^5)/(x+y); if(n<=m && isprime(n), v=concat(v,n)))); vecsort(v) \\ Jens Kruse Andersen, Jul 14 2014

Extensions

More terms from Sean A. Irvine, May 08 2014

A115349 Numbers k such that (4*k^5 + 1) is prime.

Original entry on oeis.org

1, 12, 15, 19, 27, 40, 49, 57, 60, 90, 93, 102, 132, 133, 147, 148, 153, 177, 190, 219, 240, 249, 258, 265, 274, 277, 280, 294, 313, 324, 337, 342, 363, 382, 394, 435, 448, 453, 462, 483, 489, 502, 522, 534, 538, 550, 580, 588, 609, 613, 634, 643, 648, 649
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 07 2006

Keywords

Examples

			If k=90 then (4*90^5 + 1) = 23619600001, which is prime.
If k=133 then (4*133^5 + 1) = 166463183573, which is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(4*n^5 + 1)]; // Vincenzo Librandi, Jan 31 2011
    
  • Maple
    select(t -> isprime(4*t^5+1), [$1..1000]); # Robert Israel, Jun 19 2018
  • Mathematica
    Do[If[PrimeQ[4*n^5 + 1], Print[n]], {n, 0, 1000}]
    Select[Range[700],PrimeQ[4#^5+1]&] (* Harvey P. Dale, Aug 25 2023 *)
  • PARI
    is(n)=isprime((4*n^5+1)) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

More terms from Craig Baribault (csb166(AT)psu.edu), Mar 14 2006 and Jessica M. Cornwall (jmc510(AT)psu.edu), Mar 22 2006

A121834 Primes p of the form 4*n^2 + 1 such that 4*p^2+1 is also prime.

Original entry on oeis.org

5, 37, 677, 1297, 2917, 8837, 13457, 50177, 147457, 156817, 246017, 341057, 414737, 746497, 1136357, 1726597, 1833317, 2119937, 2802277, 2808977, 3013697, 3549457, 3865157, 3896677, 4104677, 4384837, 5354597, 5410277, 5779217, 6031937, 6635777, 7001317
Offset: 1

Views

Author

Zak Seidov, Aug 28 2006

Keywords

Comments

Intersection of A001912 and A121326. Except for the first term all other terms are == 7 (mod 10). Also all the primes 4*p^2+1 are == 7 (mod 10). - Zak Seidov, Mar 05 2015

Crossrefs

Programs

  • Mathematica
    fpQ[n_]:=PrimeQ[n]&&PrimeQ[4n^2+1]; Select[4Range[2000]^2+1,fpQ] (* Harvey P. Dale, Nov 07 2016 *)
  • PARI
    isA121834(n)={ if( (n-1) %4, return(0) ; ) ; if( issquare((n-1)/4), if( isprime(4*n^2+1), return(1), return(0) ), return(0) ; ) ; } { for(i=1,1000000, p=prime(i) ; if( isA121834(p), print1(p,",") ; ) ; ) ; } /* R. J. Mathar, Sep 01 2006*/

Extensions

More terms from R. J. Mathar, Sep 01 2006

A122429 Primes p such that q = 4p^2 + 1, r = 4q^2 + 1 and s = 4r^2 + 1 are all primes.

Original entry on oeis.org

13, 9833, 41647, 151607, 264757, 356123, 361223, 446863, 449093, 457813, 531383, 641057, 655927, 841697, 855947, 899263, 913687, 1052813, 1081757, 1379383, 1506493, 1575757, 1685087, 1821013, 1821377, 1981517, 2054233, 2142037
Offset: 1

Views

Author

Zak Seidov, Oct 20 2006

Keywords

Comments

Next terms up to 400000th prime are 2286877, 2524157, 2595247, 2621737, 2931583, 3023437, 3425843, 3428567, 3538517, 3705187, 3777883, 3799717, 3875143, 3913727, 3973553, 4019833, 4167073, 4249523, 4488167, 4651873, 4822193, 4914937, 5054167, 5108293, 5140147, 5465303, 5520007, 5542003. - Zak Seidov, Jan 16 2009
Subsequence of A122424. - Pierre CAMI, Jul 21 2014

Examples

			13 is there because 13, 677, 1833317 and 13444204889957 are prime.
		

References

  • Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, p.74.

Crossrefs

Programs

  • Mathematica
    Reap[Do[p=Prime[n];q=4p^2+1;r=4q^2+1;s=4r^2+1;If[PrimeQ[{q,r,s}]=={True, True,True},Sow[p]],{n,15000}]][[2,1]]
    Select[Prime[Range[200000]],AllTrue[NestList[4#^2+1&,#,3],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 22 2015 *)
  • PARI
    f(x)=4*x^2+1;
    forprime(p=1, 10^8, if(isprime(f(p))&&isprime(f(f(p)))&&isprime(f(f(f(p)))), print1(p, ", "))) \\ Derek Orr, Jul 31 2014

Extensions

More terms from Don Reble, Oct 24 2006
Edited by R. J. Mathar, Nov 02 2009

A157935 Primes of the form m^2+1 such that m^2-7 = prevprime(m^2) (= A007917(m^2)).

Original entry on oeis.org

2917, 4357, 8101, 24337, 57601, 72901, 93637, 224677, 324901, 331777, 404497, 562501, 608401, 1166401, 1742401, 1822501, 4137157, 4639717, 5788837, 7290001, 7617601, 10265617, 10497601, 10929637, 12110401, 12362257, 14107537, 14243077
Offset: 1

Views

Author

M. F. Hasler, Mar 18 2009

Keywords

Comments

A subsequence of A005574. The values for m are listed in A157934, the next lower prime in A157183.

Crossrefs

Programs

  • Mathematica
    Select[Range[4000]^2+1,PrimeQ[#]&&NextPrime[#,-1]==#-8&] (* Harvey P. Dale, Jun 14 2020 *)
  • PARI
    forstep(m=2,9999,2, isprime(m^2+1) & precprime(m^2)==m^2-7 & print1(m^2+1,","))

Formula

a(n) = A157934(n)^2+1 = A157183(n)+8

A214518 Record differences between the numbers n such that 4*n^2 + 1 is prime.

Original entry on oeis.org

1, 2, 5, 7, 8, 10, 17, 20, 23, 44, 50, 56, 65, 76, 106, 144, 165, 173
Offset: 1

Views

Author

T. D. Noe, Aug 06 2012

Keywords

Examples

			a(1) = 1 because 4*1^2 + 1 = 5 and 4*2^2 + 1 = 17 are primes.
a(2) = 2 because 4*3^2 + 1 = 37 is prime, 4*4^2 + 1 = 65 is composite, and 4*5^2 + 1 = 101 is prime.
a(3) = 5 because 4*13^2 + 1 is prime, 4*n^2 + 1 is composite for n = 14..17, and 4*18^2 + 1 is prime.
		

Crossrefs

Cf. A121326 (primes of the form 1+4*n^2), A001912 (values of n).
Cf. A214517 (differences), A214519 (where record differences occur).

Programs

  • Mathematica
    n = 1; last = 1; t = {1}; While[Length[t] < 15, n++; p = 1 + 4*n^2; If[PrimeQ[p], If[n - last > t[[-1]], AppendTo[t, n - last]]; last = n]]; t

A230312 Squares which cannot be written as the sum of a smaller nonzero square and twice a triangular number.

Original entry on oeis.org

1, 4, 9, 25, 49, 64, 100, 144, 169, 324, 400, 729, 784, 1089, 1369, 1764, 2025, 2209, 3025, 3364, 3600, 3844, 3969, 4225, 4489, 5329, 5625, 6084, 6400, 7225, 7744, 8100, 8464, 10404, 10609, 11025, 12544, 13225, 13924, 14400, 15625, 16384, 16900
Offset: 1

Views

Author

Kieren MacMillan, Dec 20 2013

Keywords

Comments

The conjecture a(n) = A001912(n)^2 (mentioned in the formula part) is easy. In fact, any prime divisor of 4*n^2 + 1 is congruent to 1 modulo 4 and hence it can be written as a sum of two squares. Thus 4*n^2 + 1 = (2*n)^2 + 1^2 is composite if and only if it can be written as a sum of two squares in at least two ways. So the conjecture follows immediately. - Zhi-Wei Sun, Feb 23 2014
Positive squares that are the sum of two triangular numbers in exactly one way. Note that each positive square is the sum of two consecutive triangular numbers since A000217(n) + A000217(n+1) = n*(n+1)/2 + (n+1)*(n+2)/2 = (n+1)^2. - Altug Alkan, Jul 06 2016

Examples

			16 is not in the sequence because it can be expressed as 2^2 + 2 * 6.
But there is no such expression for 25 and hence it is in the sequence.
		

Crossrefs

Cf. A001912.

Programs

  • Mathematica
    A230312 = Reap[For[k = 1, k < 200, k++, n = k^2; If[Reduce[a > 0 && b > 0 && n == a^2 + b * (b + 1), {a, b}, Integers] == False, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 03 2014 *)
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(4*n^2+1), print1(n^2, ", "))); \\ Altug Alkan, Jul 06 2016

Formula

Conjecture: a(n) = A001912(n)^2, that is, squares of numbers n such that 4n^2 + 1 is prime. - Alonso del Arte, Dec 20 2013

A255634 Numbers n such that 1 + 16n^2 is prime.

Original entry on oeis.org

1, 4, 5, 6, 9, 10, 14, 21, 29, 30, 31, 39, 40, 44, 45, 46, 51, 56, 59, 60, 64, 65, 66, 70, 71, 75, 85, 96, 99, 100, 105, 109, 110, 111, 116, 124, 134, 136, 139, 144, 146, 159, 161, 170, 174, 175, 176, 179, 185, 190, 191, 195, 196, 204, 215, 216, 230, 234, 240, 251, 259, 265, 270, 274, 281
Offset: 1

Views

Author

Zak Seidov, Feb 28 2015

Keywords

Comments

Note the sets of 3 consecutive numbers starting with 4, 29, 44, 64, 109, 174, ..., these numbers are congruent to 4 mod 5; cf. A255635.

Crossrefs

Programs

A255635 Numbers n such that 1+16n^2, 1+16(n+1)^2 and 1+16(n+2)^2 are prime.

Original entry on oeis.org

4, 29, 44, 64, 109, 174, 329, 614, 1044, 1694, 1879, 2044, 2254, 2474, 2709, 3814, 5024, 5039, 5154, 5364, 5634, 5784, 6244, 6624, 6779, 6804, 6949, 7964, 8079, 8509, 8624, 9034, 9324, 9394, 9729, 10719, 11114, 11504, 11954, 12149, 13064, 13319, 13354, 13554, 14019
Offset: 1

Views

Author

Zak Seidov, Feb 28 2015

Keywords

Comments

Numbers n, n+1 and n+2 are terms in A255634.
The corresponding primes for 1+16n^2 are 257, 13457, 30977, 65537, 190097, 484417, ... (all == 7 mod 10);
The corresponding primes for 1+16(n+1)^2 are 401, 14401, 32401, 67601, 193601, 490001, ... (all == 1 mod 10);
The corresponding primes for 1+16(n+2)^2 are 577, 15377, 33857, 69697, 197137, 495617, ... (all == 7 mod 10).

Crossrefs

Programs

  • Magma
    [n: n in [0..15000] | forall{16*n^2+i: i in [1, 32*n+17, 64*n+65] |  IsPrime(16*n^2+i)}]; // Vincenzo Librandi, Mar 04 2015
  • Maple
    A255635:=n->`if`(isprime(1+16*n^2) and isprime(1+16*(n+1)^2) and isprime(1+16*(n+2)^2), n, NULL): seq(A255635(n), n=1..2*10^4); # Wesley Ivan Hurt, Feb 28 2015
  • Mathematica
    Select[Range[15000],AllTrue[{16#^2,16(#+1)^2,16(#+2)^2}+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 09 2015 *)
  • PARI
    select(n->isprime(1+16*n^2) && isprime(1+16*(n+1)^2) && isprime(1+16*(n+2)^2), vector(15000, n, n)) \\ Colin Barker, Mar 01 2015
    
Previous Showing 21-30 of 43 results. Next