cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A050914 a(n) = n*3^n + 1.

Original entry on oeis.org

1, 4, 19, 82, 325, 1216, 4375, 15310, 52489, 177148, 590491, 1948618, 6377293, 20726200, 66961567, 215233606, 688747537, 2195382772, 6973568803, 22082967874, 69735688021, 219667417264, 690383311399, 2165293113022, 6778308875545, 21182215236076, 66088511536555, 205891132094650
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Equals A036290(n) + 1.

Programs

Formula

From Colin Barker, Oct 14 2012: (Start)
a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3).
G.f.: -(6*x^2 - 3*x + 1)/((x-1)*(3*x-1)^2). (End)
E.g.f.: exp(x)*(3*x*exp(2*x) + 1). - Elmo R. Oliveira, Sep 09 2024

A186947 a(n) = 4^n - n*2^n.

Original entry on oeis.org

1, 2, 8, 40, 192, 864, 3712, 15488, 63488, 257536, 1038336, 4171776, 16728064, 67002368, 268206080, 1073250304, 4293918720, 17177640960, 68714758144, 274867945472, 1099490656256, 4398002470912, 17592093769728, 70368551239680, 281474574057472, 1125899067981824
Offset: 0

Views

Author

Paul Barry, Mar 01 2011

Keywords

Comments

Binomial transform of A186948.
Second binomial transform of A186949.

Examples

			G.f. = 1 + 2*x + 8*x^2 + 40*x^3 + 192*x^4 + 864*x^5 + 3712*x^6 + ... - _Michael Somos_, Jul 18 2018
		

Crossrefs

Programs

  • Magma
    [4^n - n*2^n: n in [0..30]]; // G. C. Greubel, Aug 14 2018
  • Mathematica
    Table[4^n-n 2^n,{n,0,30}] (* or *) LinearRecurrence[{8,-20,16},{1,2,8},30] (* Harvey P. Dale, Apr 23 2017 *)
  • PARI
    {a(n) = 2^n * (2^n - n)}; /* Michael Somos, Jul 18 2018 */
    

Formula

G.f.: (1 - 6*x + 12*x^2)/((1 - 2*x)^2*(1 - 4*x)).
a(n) = 4*a(n-1) + 2^n*(n-2), n >= 1. - Vincenzo Librandi, Mar 13 2011
a(n) = 2^n*A000325(n) = 4^n*A002064(-n) for all n in Z. - Michael Somos, Jul 18 2018
From Elmo R. Oliveira, Sep 15 2024: (Start)
E.g.f.: exp(2*x)*(exp(2*x) - 2*x).
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) for n > 2. (End)

A229580 Number of defective 3-colorings of an n X 2 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

1, 6, 40, 224, 1152, 5632, 26624, 122880, 557056, 2490368, 11010048, 48234496, 209715200, 905969664, 3892314112, 16642998272, 70866960384, 300647710720, 1271310319616, 5360119185408, 22539988369408, 94557999988736
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Examples

			Some solutions for n=3:
  0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 0
  0 0   2 0   0 1   0 2   1 0   2 2   1 2   2 1   0 2   1 2
  1 0   0 2   1 2   1 1   2 1   1 0   0 1   0 0   0 0   0 2
		

Crossrefs

Column 2 of A229586.

Formula

Empirical: a(n) = 8*a(n-1) - 16*a(n-2) for n>3.
a(n) = 4*a(n-1) + 4^(n-1) for n > 2. - Gerald Hillier, May 01 2018
a(n) = (2n - 1)*2^(2n - 3) for n > 1 [Gerson W. Barbosa]. - Gerald Hillier, May 02 2018
Empirical g.f.: x*(1 - 2*x + 8*x^2) / (1 - 4*x)^2. - Colin Barker, May 02 2018
a(n) = A002064(2n-2) - A002064(2n-3) for n > 1. - Daniel Forgues, Aug 31 2018
Empirical: a(n) = Integral_{t>0} dt/Beta(n-t,n+t) for n > 1. - Gregory Gerard Wojnar, Feb 10 2024

A367004 a(n) is the smallest prime factor of n*2^n+1.

Original entry on oeis.org

3, 3, 5, 5, 7, 5, 3, 3, 11, 7, 13, 13, 3, 3, 17, 17, 5, 11, 3, 3, 23, 13, 5, 5, 3, 3, 7, 29, 31, 17, 3, 3, 47, 19, 37, 37, 3, 3, 41, 41, 13, 23, 3, 3, 11, 5, 7, 7, 3, 3, 53, 7, 5591, 29, 3, 3, 5, 31, 37, 61, 3, 3, 5, 5, 67, 5, 3, 3, 7, 37, 11, 41, 3, 3, 149
Offset: 1

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

  • Maple
    seq(min(numtheory:-factorset(n*2^n+1)), n=1..100); # Robert Israel, Nov 09 2023
  • Mathematica
    Table[FactorInteger[n 2^n+1][[1,1]],{n,80}] (* Harvey P. Dale, Aug 14 2024 *)

Formula

a(n) = A020639(A002064(n)).

A029544 Near Cullen numbers: k such that (k+1)*2^k + 1 is prime.

Original entry on oeis.org

0, 1, 2, 5, 6, 13, 26, 65, 66, 86, 114, 133, 186, 294, 445, 866, 1325, 1478, 1823, 2765, 7553, 7943, 10178, 20960, 20964, 21337, 26562, 85374, 96749, 247038
Offset: 1

Views

Author

Keywords

Comments

Primes in the sequence are 2, 5, 13, 1823, 96749, ... - R. J. Mathar, Oct 15 2011
We can write (k+1)*2^k + 1 = {(k+1)/2}*4^{(k+1)/2} + 1, and when k is odd, this takes the form of a generalized Cullen prime (base 4). These are listed in A007646. In other words, {2*A007646 - 1} gives all the odd terms of this sequence. - Jeppe Stig Nielsen, Oct 16 2019

Crossrefs

Programs

  • PARI
    isok(n) = isprime((n+1)*2^n+1); \\ Michel Marcus, Nov 09 2013

Extensions

Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008

A050915 a(n) = n*4^n + 1.

Original entry on oeis.org

1, 5, 33, 193, 1025, 5121, 24577, 114689, 524289, 2359297, 10485761, 46137345, 201326593, 872415233, 3758096385, 16106127361, 68719476737, 292057776129, 1236950581249, 5222680231937, 21990232555521, 92358976733185
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Cf. A002064.

Programs

  • Magma
    [ n*4^n+1: n in [0..30]]; // Vincenzo Librandi, Sep 16 2011
  • Mathematica
    CoefficientList[Series[-(12 x^2 - 4 x + 1)/((x - 1) (4 x - 1)^2), {x, 0, 21}], x] (* Michael De Vlieger, Jan 04 2020 *)
    Table[n*4^n+1,{n,0,30}] (* or *) LinearRecurrence[{9,-24,16},{1,5,33},30] (* Harvey P. Dale, Sep 18 2024 *)

Formula

From Colin Barker, Oct 14 2012: (Start)
a(n) = 9*a(n-1) - 24*a(n-2) + 16*a(n-3).
G.f.: -(12*x^2 - 4*x + 1)/((x-1)*(4*x-1)^2). (End)
E.g.f.: exp(x)*(1 + 4*exp(3*x)*x). - Stefano Spezia, Jan 05 2020

A134081 Triangle T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1), read by rows.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 12, 8, 1, 5, 22, 26, 11, 1, 6, 35, 60, 45, 14, 1, 7, 51, 115, 125, 69, 17, 1, 8, 70, 196, 280, 224, 98, 20, 1, 9, 92, 308, 546, 574, 364, 132, 23, 1, 10, 117, 456, 966, 1260, 1050, 552, 171, 26, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 07 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  2,  1;
  3,  5,   1;
  4, 12,   8,   1;
  5, 22,  26,  11,  1;
  6, 35,  60,  45, 14,  1;
  7, 51, 115, 125, 69, 17, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A134081:= func< n,k | Binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1) >;
    [A134081(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_]:= Binomial[n, k]*((2*k+1)*(n-k) +k+1)/(k+1);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
  • Sage
    def A134081(n,k): return binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1)
    flatten([[A134081(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

Binomial transform of A112295(unsigned).
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1).
Sum_{k=0..n} T(n, k) = 2^n *n + 1 = A002064(n). (End)

A367007 Number of distinct prime factors of n*2^n + 1.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 2, 3, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 2, 3, 5, 5, 3, 2, 5, 2, 3, 3, 3, 3, 3, 4, 4, 5, 4, 4, 5, 5, 4, 2, 6, 3, 6, 3, 5, 4, 3, 5, 5, 4, 4, 7, 3, 3, 6, 5, 7, 4, 4, 5, 5, 5, 5, 5, 3, 5, 4, 4, 4, 6, 4, 4, 4, 5, 4, 6, 6
Offset: 0

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Comments

The numbers n*2^n+1 are called Cullen numbers.

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[n*2^n + 1], {n, 0, 100}] (* Amiram Eldar, Jan 06 2024 *)
  • PARI
    a(n) = omega(n*2^n + 1); \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = omega(n*2^n + 1) = A001221(A002064(n)).

A050916 a(n) = n*5^n + 1.

Original entry on oeis.org

1, 6, 51, 376, 2501, 15626, 93751, 546876, 3125001, 17578126, 97656251, 537109376, 2929687501, 15869140626, 85449218751, 457763671876, 2441406250001, 12969970703126, 68664550781251, 362396240234376, 1907348632812501, 10013580322265626, 52452087402343751
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Programs

  • Magma
    [ n*5^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
  • Mathematica
    Table[n 5^n+1,{n,0,20}] (* or *) LinearRecurrence[{11,-35,25},{1,6,51},20] (* Harvey P. Dale, Sep 15 2011 *)

Formula

a(n) = 11*a(n-1) - 35*a(n-2) + 25*a(n-3); a(0)=1, a(1)=6, a(2)=51. - Harvey P. Dale, Sep 15 2011
G.f.: -(20*x^2-5*x+1)/((x-1)*(5*x-1)^2). - Colin Barker, Oct 14 2012
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 5*x*exp(4*x)).
a(n) = A036291(n) + 1. (End)

A050917 a(n) = n*6^n + 1.

Original entry on oeis.org

1, 7, 73, 649, 5185, 38881, 279937, 1959553, 13436929, 90699265, 604661761, 3990767617, 26121388033, 169789022209, 1097098297345, 7052774768641, 45137758519297, 287753210560513, 1828079220031489, 11577835060199425, 73123168801259521, 460675963447934977
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Programs

  • Magma
    [ n*6^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
    
  • Mathematica
    Table[n 6^n+1,{n,0,40}] (* or *) LinearRecurrence[{13,-48,36},{1,7,73},40] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    vector(20, n, n--; n*6^n + 1) \\ Michel Marcus, Jun 11 2015

Formula

G.f.: -(30*x^2-6*x+1)/((x-1)*(6*x-1)^2). - Colin Barker, Oct 14 2012
a(n) = 13*a(n-1) - 48*a(n-2) + 36*a(n-3); a(0)=1, a(1)=7, a(2)=73. - Harvey P. Dale, Feb 20 2013
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 6*x*exp(5*x)).
a(n) = A036292(n) + 1. (End)
Previous Showing 21-30 of 74 results. Next