cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 74 results. Next

A128001 Numbers k such that (k-1)*2^k + 1 is prime.

Original entry on oeis.org

2, 3, 7, 27, 51, 55, 81, 1471, 1483, 8668, 10885, 20803, 32605, 36391, 57004, 61627, 88651, 89731, 133928, 153428
Offset: 1

Views

Author

N. J. A. Sloane, Jan 25 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200], PrimeQ[(# - 1)*2^# + 1] &]  (* G. C. Greubel, May 08 2018 *)
  • PARI
    is(n)=ispseudoprime((n-1)<Charles R Greathouse IV, Jun 06 2017

Extensions

a(8)-a(14) from Jason Earls, Jan 29 2008
a(15)-a(18) from Charles R Greathouse IV, Oct 09 2011
a(19)-a(20) from Michael S. Branicky, May 14 2025

A129765 Triangle, (1, 1, 2, 2, 2, ...) in every column.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, May 16 2007

Keywords

Comments

Row sums = A004277, (1, 2, 4, 6, 8, 10, ...). Binomial transform of (1, 1, 2, 2, 2, ...) = A000325, starting (1, 2, 5, 12, 27, 58, ...). Binomial transform of A130196 = A130197, a triangle with row sums = the Cullen numbers, A002064.

Examples

			First few rows of the triangle:
  1;
  1, 1;
  2, 1, 1;
  2, 2, 1, 1;
  2, 2, 2, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A129765 := proc(n,m) if abs(n-m)<2 then 1 ; else 2 ; end if ; end proc:
    for n from 1 to 18 do for m from 1 to n do printf("%d,", A129765(n,m)) ; od ; od ; # R. J. Mathar, Jun 08 2007
  • Mathematica
    Table[PadLeft[{1,1},n,2],{n,20}]//Flatten (* Harvey P. Dale, May 20 2019 *)

Formula

Triangle, (1, 1, 2, 2, 2, ...) in every column. By rows, (1; 1, 1; 2, 1, 1; ...), continuing with (n-2) 2's followed by two 1's. Inverse of A000012 as an infinite lower triangular matrix (all 1's and the rest zeros), signed by columns: (+ - - + + - -, ...).

Extensions

More terms from R. J. Mathar, Jun 08 2007

A130197 Binomial transform of A130196.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 12, 8, 4, 1, 27, 20, 12, 5, 1, 58, 47, 32, 17, 6, 1, 121, 105, 79, 49, 23, 7, 1, 248, 226, 184, 128, 72, 30, 8, 1, 503, 474, 410, 312, 200, 102, 38, 9, 1, 1014, 977, 884, 722, 512, 302, 140, 47, 10, 1, 2037, 1991, 1861, 1606, 1234, 814, 442, 187, 57, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, May 16 2007

Keywords

Comments

Row sums = A002064, the Cullen numbers: (1, 3, 9, 25, 65, 161, 385, ...).
Left border = A000325, (2^n - n) starting (1, 2, 5, 12, 27, 58, ...).
Equals A129689 with first column removed. - Georg Fischer, Jul 25 2023

Examples

			First few rows of the triangle:
    1;
    2,   1;
    5,   3,  1;
   12,   8,  4,  1;
   27,  20, 12,  5,  1;
   58,  47, 32, 17,  6, 1;
  121, 105, 79, 49, 23, 7, 1;
  ...
		

Crossrefs

Formula

A007318 * A130196 as infinite lower triangular matrices.

Extensions

a(32) corrected and more terms from Georg Fischer, Jul 25 2023

A173474 Numbers n such that n*2^n + 1 is not prime.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 19 2010

Keywords

Comments

Complement of "prime Cullen numbers" A005849.
Where a(n)=n for n <= 140, and a(141)=142,..., a(4711)=4712, a(4712)=4714,..., a(5792)=5794, a(5793)=5796,..., a(6607)=6610, a(6608)=6612,..., a(18491)=18495, a(18492)=18497,..., a(32286)=32291, a(32287)=32293,..., a(32462)=32468, a(32463)=32470,..., a(59648)=59655, a(59649)=59657,..., a(90816)=90824, a(90817)=90826,..., a(262403)=262418, a(262404)=262420,..., a(361264)=361274, a(361265)=361276,..., a(481887)=481898, a(481888)=481900,..., a(1354815)=1354827, a(1354816)=1354829,..., a(6328534)=6328547, a(6328535)=6328549,...
Otherwise said, this includes all nonnegative integers except for the "prime Cullen numbers" (more precisely, indices of primes in A002064): 1, 140, 4713, 5795, ... listed in A005849. - M. F. Hasler, Jan 18 2015

Crossrefs

Programs

  • Mathematica
    nnnpQ[n_]:=Module[{c=n 2^n+1},!PrimeQ[c]&&c>=0]; Select[Range[0,100], nnnpQ] (* Harvey P. Dale, Aug 23 2011 *)

Extensions

Corrected and edited by M. F. Hasler, Jan 18 2015
Name edited by Michel Marcus, Nov 02 2017

A181527 Binomial transform of A113127; (1, 1, 3, 7, 15, 31, ...) convolved with (1, 3, 7, 15, 31, 63, ...).

Original entry on oeis.org

1, 4, 13, 38, 103, 264, 649, 1546, 3595, 8204, 18445, 40974, 90127, 196624, 426001, 917522, 1966099, 4194324, 8912917, 18874390, 39845911, 83886104, 176160793, 369098778, 771751963, 1610612764, 3355443229, 6979321886, 14495514655, 30064771104, 62277025825
Offset: 0

Views

Author

Gary W. Adamson, Oct 26 2010

Keywords

Comments

A181527 = Partial sums of (A002064 Cullen numbers: n*2^n+1). - Vladimir Joseph Stephan Orlovsky, Jul 09 2011
Form a triangle with T(1,1) = n, T(2,1) = T(2,2) = n-1, T(3,1) = T(3,3) = n-2, ..., T(n,1) = T(n,n) = 1. The interior members are T(i,j) = T(i-1,j-1) + T(i-1,j). The sum of all members for a triangle of size n is a(n-1). Example for n = 5: row(1) = 5; row(2) = 4, 4; row(3) = 3, 8, 3; row(4) = 2, 11, 11, 2; row(5) = 1, 13, 22, 13, 1. The sum of all members is 103 = a(4). - J. M. Bergot, Oct 16 2012

Examples

			a(4) = 103 = (1, 1, 3, 7, 15) dot (31, 15, 7, 3, 1) = (31 + 15 + 21, + 21 + 15)
a(3) = 38 = (1, 3, 3, 1) dot (1, 3, 6, 10) = (1 + 9 + 18 + 10).
		

Crossrefs

Programs

Formula

Binomial transform of A113127; (1, 3, 7, 15, 31, ...) convolved with (1, 1, 3, 7, 15, 31, ...).
From R. J. Mathar, Oct 30 2010: (Start)
a(n) = 3+ n + 2^(n+1)*(n-1) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: ( 1-2*x+2*x^2 ) / ( (2*x-1)^2*(x-1)^2 ). (End)

A242116 Cullen semiprimes: Semiprimes of the form k*2^k + 1.

Original entry on oeis.org

9, 25, 65, 161, 2049, 4609, 22529, 1048577, 44040193, 283467841537, 1202590842881, 256065421246102339102334047485953, 4259306016766850789028922770063361, 356615920533143509709616588588493085605889, 57729314674570665269045550892293179276409335447553
Offset: 1

Views

Author

K. D. Bajpai, May 04 2014

Keywords

Comments

The k-th Cullen number Cullen(k) = k*2^k + 1.
If Cullen(k) is semiprime, it is in the sequence.
The next term, a(16), has 52 digits.

Examples

			a(4) = 161 = (5*2^5+1) is 5th Cullen number and 161 = 7 * 23 is semiprime.
a(5) = 2049 = (8*2^8+1) is 8th Cullen number and 2049 = 3 * 683 is semiprime.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [1..200] | IsSemiprime(s) where s is n*2^n+1]; // // Vincenzo Librandi, May 07 2014
  • Maple
    with(numtheory): A242116:= proc(); if bigomega(x*2^x+1) = 2 then RETURN (x*2^x+1);  fi; end: seq(A242116 (), x=1..200);
  • Mathematica
    cullen[n_] := n * 2^n + 1; Select[cullen[Range[35]], PrimeOmega[#] == 2 &] (* Amiram Eldar, Nov 27 2019 *)
  • PARI
    select(n->bigomega(n)==2, vector(90,n,n<Charles R Greathouse IV, May 06 2014
    

Formula

a(n) = A002064(A242175(n)). - Amiram Eldar, Nov 27 2019

A278910 Triangle of order m: C(n,k) = k*(n-k+1)^(k+m)+n-k, 0 <= k <= n, m = 0, read by rows.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 9, 3, 4, 7, 20, 25, 4, 5, 9, 35, 83, 65, 5, 6, 11, 54, 195, 326, 161, 6, 7, 13, 77, 379, 1027, 1217, 385, 7, 8, 15, 104, 653, 2504, 5123, 4376, 897, 8, 9, 17, 135, 1035, 5189, 15629, 24579, 15311, 2049, 9, 10, 19, 170, 1543, 9610, 38885, 93754, 114691, 52490, 4609, 10
Offset: 0

Author

Juri-Stepan Gerasimov, Nov 30 2016

Keywords

Examples

			As an infinite triangular array:
0
1   1
2   3   2
3   5   9    3
4   7  20   25     4
5   9  35   83    65      5
As an infinite square array (matrix):
0   1   2    3     4      5
1   3   9   25    65    161
2   5  20   83   326   1217
3   7  35  195  1027   5123
4   9  54  379  2504  15629
5  11  77  653  5189  38885
		

Crossrefs

Cf. A002064.
Cf. Triangles of order m: A003056 (m = -k), A059036 (m = 1-k).

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1)^k+n-k: k in [0..n]]: n in [0..10]];
  • Maple
    A278910 := proc(n,k)
        k*(n-k+1)^k+n-k ;
    end proc:
    seq(seq(A278910(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Dec 02 2016

A321123 a(n) = 2^n + 2*n^2 + 2*n + 1.

Original entry on oeis.org

2, 7, 17, 33, 57, 93, 149, 241, 401, 693, 1245, 2313, 4409, 8557, 16805, 33249, 66081, 131685, 262829, 525049, 1049417, 2098077, 4195317, 8389713, 16778417, 33555733, 67110269, 134219241, 268437081, 536872653, 1073743685, 2147485633, 4294969409, 8589936837
Offset: 0

Author

Keywords

Comments

For n >= 2, a(n) is the number of evaluation points on the n-dimensional cube in Genz and Malik's degree 7 cubature rule.

Programs

  • Magma
    [2^n + 2*n^2 + 2*n + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
  • Mathematica
    Table[2^n + 2*n^2 + 2*n + 1, {n, 0, 50}]
  • Maxima
    makelist(2^n + 2*n^2 + 2*n + 1, n, 0, 50);
    

Formula

a(n) = A000079(n) + A001844(n).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4), n >= 4.
G.f.: (2 - 3*x - 3*x^3)/((1 - 2*x)*(1 - x)^3).
E.g.f.: exp(2*x) + (1 + 4*x + 2*x^2)*exp(x).

A322593 a(n) = 2^n + 2*n^2 + 1.

Original entry on oeis.org

2, 5, 13, 27, 49, 83, 137, 227, 385, 675, 1225, 2291, 4385, 8531, 16777, 33219, 66049, 131651, 262793, 525011, 1049377, 2098035, 4195273, 8389667, 16778369, 33555683, 67110217, 134219187, 268437025, 536872595, 1073743625, 2147485571, 4294969345, 8589936771
Offset: 0

Author

Keywords

Comments

For n = 3..7, a(n) is the number of evaluating points on the n-dimensional sphere (also n-space with weight function exp(-r^2) or exp(-r)) in a degree 7 cubature rule.

References

  • Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.

Programs

  • Magma
    [2^n + 2*n^2 + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
  • Mathematica
    Table[2^n + 2*n^2 + 1, {n, 0, 50}]
    LinearRecurrence[{5,-9,7,-2},{2,5,13,27},50] (* Harvey P. Dale, Mar 23 2021 *)
  • Maxima
    makelist(2^n + 2*n^2 + 1, n, 0, 50);
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = a(n-1) + A100315(n-1), n >= 2.
G.f.: (2 - 5*x + 6*x^2 - 7*x^3)/((1 - 2*x)*(1 - x)^3)
E.g.f.: exp(2*x) + (1 + 2*x + 2*x^2)*exp(x).

A367008 Number of prime factors of n*2^n + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 2, 2, 4, 2, 3, 3, 3, 3, 2, 4, 4, 4, 5, 2, 4, 4, 4, 4, 5, 4, 3, 3, 6, 6, 3, 2, 5, 2, 4, 3, 4, 3, 3, 4, 4, 5, 4, 4, 5, 5, 4, 5, 6, 3, 6, 3, 5, 4, 4, 5, 5, 4, 4, 7, 3, 3, 7, 5, 9, 5, 4, 5, 5, 6, 5, 5, 5, 5, 5, 4, 4, 6, 4, 4, 4, 5, 4, 7, 6
Offset: 0

Author

Sean A. Irvine, Oct 31 2023

Keywords

Comments

The numbers n*2^n+1 are called Cullen numbers.

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[n*2^n + 1], {n, 0, 100}] (* Amiram Eldar, Jan 06 2024 *)
  • PARI
    a(n) = bigomega(n*2^n + 1); \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = bigomega(n*2^n + 1) = A001222(A002064(n)).
Previous Showing 41-50 of 74 results. Next