cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 240 results. Next

A268820 Square array A(r,c): A(0,c) = c, A(r,0) = 0, A(r>=1,c>=1) = A003188(1+A006068(A(r-1,c-1))) = A268717(1+A(r-1,c-1)), read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 6, 3, 1, 0, 5, 2, 2, 3, 1, 0, 6, 12, 7, 2, 3, 1, 0, 7, 4, 6, 6, 2, 3, 1, 0, 8, 7, 13, 5, 6, 2, 3, 1, 0, 9, 5, 12, 7, 7, 6, 2, 3, 1, 0, 10, 24, 5, 15, 4, 7, 6, 2, 3, 1, 0, 11, 8, 4, 13, 5, 5, 7, 6, 2, 3, 1, 0, 12, 11, 25, 4, 14, 12, 5, 7, 6, 2, 3, 1, 0, 13, 9, 24, 12, 15, 4, 4, 5, 7, 6, 2, 3, 1, 0, 14, 13, 9, 27, 12, 10, 13, 4, 5, 7, 6, 2, 3, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2016

Keywords

Examples

			The top left [0 .. 16] x [0 .. 19] section of the array:
0, 1, 2, 3, 4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
0, 1, 3, 6, 2, 12,  4,  7,  5, 24,  8, 11,  9, 13, 15, 10, 14, 48, 16, 19
0, 1, 3, 2, 7,  6, 13, 12,  5,  4, 25, 24,  9,  8, 15, 14, 11, 10, 49, 48
0, 1, 3, 2, 6,  5,  7, 15, 13,  4, 12, 27, 25,  8, 24, 14, 10,  9, 11, 51
0, 1, 3, 2, 6,  7,  4,  5, 14, 15, 12, 13, 26, 27, 24, 25, 10, 11,  8,  9
0, 1, 3, 2, 6,  7,  5, 12,  4, 10, 14, 13, 15, 30, 26, 25, 27, 11,  9, 24
0, 1, 3, 2, 6,  7,  5,  4, 13, 12, 11, 10, 15, 14, 31, 30, 27, 26,  9,  8
0, 1, 3, 2, 6,  7,  5,  4, 12, 15, 13,  9, 11, 14, 10, 29, 31, 26, 30,  8
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 14, 15,  8,  9, 10, 11, 28, 29, 30, 31
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 10, 14, 24,  8, 11,  9, 20, 28, 31
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 14, 11, 10, 25, 24,  9,  8, 21, 20
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 14, 10,  9, 11, 27, 25,  8, 24, 23
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 14, 10, 11,  8,  9, 26, 27, 24, 25
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 14, 10, 11,  9, 24,  8, 30, 26, 25
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 14, 10, 11,  9,  8, 25, 24, 31, 30
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 14, 10, 11,  9,  8, 24, 27, 25, 29
0, 1, 3, 2, 6,  7,  5,  4, 12, 13, 15, 14, 10, 11,  9,  8, 24, 25, 26, 27
		

Crossrefs

Inverses of these permutations can be found in table A268830.
Row 0: A001477, Row 1: A268717, Row 2: A268821, Row 3: A268823, Row 4: A268825, Row 5: A268827, Row 6: A268831, Row 7: A268933.
Rows converge towards A003188, which is also the main diagonal.
Cf. array A268715 (can be extracted from this one).
Cf. array A268833 (shows related Hamming distances with regular patterns).

Programs

  • Mathematica
    A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m=A006068[Floor[n/2]]}, 2m + Mod[Mod[n,2] + Mod[m, 2], 2]]]; a[r_, 0]:= 0; a[0, c_]:=c; a[r_, c_]:= A003188[1 + A006068[a[r - 1, c - 1]]]; Table[a[c, r - c], {r, 0, 15}, {c, 0, r}] //Flatten (* Indranil Ghosh, Apr 02 2017 *)
  • PARI
    A003188(n) = bitxor(n, n\2);
    A006068(n) = if(n<2, n, {my(m = A006068(n\2)); 2*m + (n%2 + m%2)%2});
    a(r, c) = if(r==0, c, if(c==0, 0, A003188(1 + A006068(a(r - 1, c - 1)))));
    for(r=0, 15, for(c=0, r, print1(a(c, r - c),", "); ); print(); ); \\ Indranil Ghosh, Apr 02 2017
    
  • Python
    def A003188(n): return n^(n//2)
    def A006068(n):
        if n<2: return n
        else:
            m=A006068(n//2)
            return 2*m + (n%2 + m%2)%2
    def a(r, c): return c if r<1 else 0 if c<1 else A003188(1 + A006068(a(r - 1, c - 1)))
    for r in range(16):
        print([a(c, r - c) for c in range(r + 1)]) # Indranil Ghosh, Apr 02 2017
  • Scheme
    (define (A268820 n) (A268820bi (A002262 n) (A025581 n)))
    (define (A268820bi row col) (cond ((zero? row) col) ((zero? col) 0) (else (A268717 (+ 1 (A268820bi (- row 1) (- col 1)))))))
    (define (A268820bi row col) (cond ((zero? row) col) ((zero? col) 0) (else (A003188 (+ 1 (A006068 (A268820bi (- row 1) (- col 1))))))))
    

Formula

For row zero: A(0,k) = k, for column zero: A(n,0) = 0, and in other cases: A(n,k) = A003188(1+A006068(A(n-1,k-1)))
Other identities. For all n >= 0:
A(n,n) = A003188(n).
A(A006068(n),A006068(n)) = n.

A071673 Sequence a(n) obtained by setting a(0) = 0; then reading the table T(x,y)=a(x)+a(y)+1 in antidiagonal fashion.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 6, 5, 6, 5, 4, 4, 5, 6, 6, 6, 6, 5, 4, 5, 5, 6, 6, 7, 6, 6, 5, 5, 5, 6, 6, 6, 7, 7, 6, 6, 6, 5, 4, 6, 7, 6, 7, 7, 7, 6, 7, 6, 4, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 5, 5, 5, 6, 6, 7, 8, 7, 7, 7, 8, 7, 6, 6, 5, 6, 6, 7, 6, 8, 8, 7, 7, 8, 8, 6, 7, 6, 6
Offset: 0

Views

Author

Antti Karttunen, May 30 2002

Keywords

Comments

The fixed point of RASTxx transformation. The repeated applications of RASTxx starting from A072643 seem to converge toward this sequence. Compare to A072768 from which this differs first time at the position n=37, where A072768(37) = 4, while A071673(37) = 5.
Each term k occurs A000108(k) times, and maximal position where k occurs is A072638(k).
The size of each Catalan structure encoded by the corresponding terms in triangles A071671 & A071672 (i.e., the number of digits / 2), as obtained with the global ranking/unranking scheme presented in A071651-A071654.

Examples

			The first 15 rows of this irregular triangular table:
               0,
               1,
              2, 2,
             3, 3, 3,
            3, 4, 4, 3,
           4, 4, 5, 4, 4,
          4, 5, 5, 5, 5, 4,
         4, 5, 6, 5, 6, 5, 4,
        4, 5, 6, 6, 6, 6, 5, 4,
       5, 5, 6, 6, 7, 6, 6, 5, 5,
      5, 6, 6, 6, 7, 7, 6, 6, 6, 5,
     4, 6, 7, 6, 7, 7, 7, 6, 7, 6, 4,
    5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 5, 5,
   5, 6, 6, 7, 8, 7, 7, 7, 8, 7, 6, 6, 5,
  6, 6, 7, 6, 8, 8, 7, 7, 8, 8, 6, 7, 6, 6
etc.
E.g., we have
  a(1) = T(0,0) = a(0) + a(0) + 1 = 1,
  a(2) = T(1,0) = a(1) + a(0) + 1 = 2,
  a(3) = T(0,1) = a(0) + a(1) + 1 = 2,
  a(4) = T(2,0) = a(2) + a(0) + 1 = 3, etc.
		

Crossrefs

Same triangle computed modulo 2: A071674.
Permutations of this sequence include: A072643, A072644, A072645, A072660, A072768, A072789, A075167.

Programs

Formula

a(0) = 0, a(n) = 1 + a(A025581(n-1)) + a(A002262(n-1)) = 1 + a(A004736(n)) + a(A002260(n)).

Extensions

Self-referential definition added Jun 03 2002
Term a(0) = 0 prepended and the Example-section amended by Antti Karttunen, Aug 17 2021

A073345 Table T(n,k), read by ascending antidiagonals, giving the number of rooted plane binary trees of size n and height k.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 8, 0, 0, 0, 0, 0, 0, 0, 4, 20, 0, 0, 0, 0, 0, 0, 0, 0, 1, 40, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 68, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 94, 152, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 114, 376, 144, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Jul 31 2002

Keywords

Examples

			The top-left corner of this square array is
  1 0 0 0 0 0 0 0 0 ...
  0 1 0 0 0 0 0 0 0 ...
  0 0 2 1 0 0 0 0 0 ...
  0 0 0 4 6 6 4 1 0 ...
  0 0 0 0 8 20 40 68 94 ...
E.g. we have A000108(3) = 5 binary trees built from 3 non-leaf (i.e. branching) nodes:
_______________________________3
___\/__\/____\/__\/____________2
__\/____\/__\/____\/____\/_\/__1
_\/____\/____\/____\/____\./___0
The first four have height 3 and the last one has height 2, thus T(3,3) = 4, T(3,2) = 1 and T(3,any other value of k) = 0.
		

References

  • Luo Jian-Jin, Catalan numbers in the history of mathematics in China, in Combinatorics and Graph Theory, (Yap, Ku, Lloyd, Wang, Editors), World Scientific, River Edge, NJ, 1995.

Crossrefs

Variant: A073346. Column sums: A000108. Row sums: A001699.
Diagonals: A073345(n, n) = A011782(n), A073345(n+3, n+2) = A014480(n), A073345(n+2, n) = A073773(n), A073345(n+3, n) = A073774(n) - Henry Bottomley and AK, see the attached notes.
A073429 gives the upper triangular region of this array. Cf. also A065329, A001263.

Programs

  • Maple
    A073345 := n -> A073345bi(A025581(n), A002262(n));
    A073345bi := proc(n,k) option remember; local i,j; if(0 = n) then if(0 = k) then RETURN(1); else RETURN(0); fi; fi; if(0 = k) then RETURN(0); fi; 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073345bi(floor((n-1)/2),k-1)^2); end;
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
  • Mathematica
    a[0, 0] = 1; a[n_, k_]/;k2^n-1 := 0; a[n_, k_]/;1 <= n <= k <= 2^n-1 := a[n, k] = Sum[a[n-1, k-1-i](2Sum[ a[j, i], {j, 0, n-2}]+a[n-1, i]), {i, 0, k-1}]; Table[a[n, k], {n, 0, 9}, {k, 0, 9}]
    (* or *) a[0] = 0; a[1] = 1; a[n_]/;n>=2 := a[n] = Expand[1 + x a[n-1]^2]; gfT[n_] := a[n]-a[n-1]; Map[CoefficientList[ #, x, 8]&, Table[gfT[n], {n, 9}]/.{x^i_/;i>=9 ->0}] (Callan)

Formula

(See the Maple code below. Is there a nicer formula?)
This table was known to the Chinese mathematician Ming An-Tu, who gave the following recurrence in the 1730s. a(0, 0) = 1, a(n, k) = Sum[a(n-1, k-1-i)( 2*Sum[ a(j, i), {j, 0, n-2}]+a(n-1, i) ), {i, 0, k-1}]. - David Callan, Aug 17 2004
The generating function for row n, T_n(x):=Sum[T(n, k)x^k, k>=0], is given by T_n = a(n)-a(n-1) where a(n) is defined by the recurrence a(0)=0, a(1)=1, a(n) = 1 + x a(n-1)^2 for n>=2. - David Callan, Oct 08 2005

A073346 Table T(n,k) (listed antidiagonalwise in order T(0,0), T(1,0), T(0,1), T(2,0), T(1,1), ...) giving the number of rooted plane binary trees of size n and "contracted height" k.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 1, 0, 8, 8, 0, 0, 0, 0, 0, 0, 12, 16, 0, 0, 0, 0, 0, 0, 2, 12, 40, 16, 0, 0, 0, 0, 0, 0, 2, 12, 80, 48, 0, 0, 0, 0, 0, 0, 0, 0, 12, 136, 144, 32, 0, 0, 0, 0, 0, 0, 0, 2, 20, 224, 384, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16
Offset: 0

Views

Author

Antti Karttunen, Jul 31 2002

Keywords

Comments

The height of binary trees is computed here in the same way as in A073345, except that whenever a complete binary tree of (2^k)-1 nodes with all its leaves at the same level, i.e., one of the following trees:
___________\/\/\/\/
______________\/____\ /__
____.__\/__\/____\/__ etc.
is encountered as a terminating subtree, it is regarded just a variant of . (an empty tree, a single leaf) and contributes nothing to the height of the tree.

Examples

			The top-left corner of this square array:
1 1 0 1 0 0 0 1 ...
0 0 2 0 2 2 0 0 ...
0 0 0 4 4 8 12 12 ...
0 0 0 0 8 16 40 80 ...
		

Crossrefs

Variant: A073345. The first row: A036987. Column sums: A000108. Diagonals: T(n, n) = A000007(n), T(n+1, n) = A000079(n), T(n+2, n) = A058922(n), T(n+3, n) = A074092(n) - [see the attached notes.].
A073430 gives the upper triangular region of this array. Used to compute A073431. Entries on row k are all divisible by 2^k, thus dividing them out yields the array/triangle A074079/A074080.

Programs

  • Maple
    A073346 := n -> A073346bi(A025581(n), A002262(n));
    A073346bi := proc(n,k) option remember; local i,j; if(0 = k) then RETURN(A036987(n)); fi; if(0 = n) then RETURN(0); fi; 2 * add(A073346bi(n-i-1,k-1) * add(A073346bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073346bi(n-i-1,k-1) * add(A073346bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073346bi(floor((n-1)/2),k-1)^2) - (`if`((1=k),1,0))*A036987(n); end;
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);

Formula

(See the Maple code below. Note that here we use the same convolution recurrence as with A073345, but only the initial conditions for the first two rows (k=0 and k=1) are different. Is there a nicer formula?)

Extensions

Sequence number in comments corrected

A114327 Table T(n,m) = n - m read by upwards antidiagonals.

Original entry on oeis.org

0, 1, -1, 2, 0, -2, 3, 1, -1, -3, 4, 2, 0, -2, -4, 5, 3, 1, -1, -3, -5, 6, 4, 2, 0, -2, -4, -6, 7, 5, 3, 1, -1, -3, -5, -7, 8, 6, 4, 2, 0, -2, -4, -6, -8, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, 10, 8, 6, 4, 2, 0, -2, -4, -6, -8, -10, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, -11, 12, 10, 8, 6, 4, 2, 0, -2, -4, -6, -8, -10, -12
Offset: 0

Views

Author

Keywords

Comments

From Clark Kimberling, May 31 2011: (Start)
If we arrange A000027 as an array with northwest corner
1 2 4 7 17 ...
3 5 8 12 18 ...
6 9 13 18 24 ...
10 14 19 25 32 ...
diagonals can be numbered as follows depending on their distance to the main diagonal:
Diag 0: 1, 5, 13, 25, ...
Diag 1: 2, 8, 18, 32, ...
Diag -1: 3, 9, 19, 33, ...,
then a(n) in the flattened array is the number of the diagonal that contains n+1. (End)
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in Jordan-Schwinger form (cf. Harter, Klee, Schwinger). Triangle terms T(n,k) = T(2j,j-m) satisfy: (1/2) T(2j,j-m) = = m. Matrix J_3 is diagonal, so this equality determines the only nonzero entries. - Bradley Klee, Jan 29 2016
For the characteristic polynomial of the n X n matrix M_n (Det(x*1_n - M_n)) with elements M_n(i, j) = i-j see the Michael Somos, Nov 14 2002, comment on A002415. - Wolfdieter Lang, Feb 05 2018
The entries of the n-th antidiagonal, T(n,1), T(n-1,2), ... , T(1,n), are the eigenvalues of the Hamming graph H(2,n-1) (or hypercube Q(n-1)). - Miquel A. Fiol, May 21 2024

Examples

			From _Wolfdieter Lang_, Feb 05 2018: (Start)
The table T(n, m) begins:
  n\m 0  1  2  3  4  5 ...
  0:  0 -1 -2 -3 -4 -5 ...
  1:  1  0 -1 -2 -3 -4 ...
  2:  2  1  0 -1 -2 -3 ...
  3:  3  2  1  0 -1 -2 ...
  4:  4  3  2  1  0 -1 ...
  5:  5  4  3  2  1  0 ...
  ...
The triangle t(n, k) begins:
  n\k  0  1  2  3  4  5  6  7  8  9  10 ...
  0:   0
  1:   1 -1
  2:   2  0 -2
  3:   3  1 -1 -3
  4:   4  2  0 -2 -4
  5:   5  3  1 -1 -3 -5
  6:   6  4  2  0 -2 -4 -6
  7:   7  5  3  1 -1 -3 -5 -7
  8:   8  6  4  2  0 -2 -4 -6 -8
  9:   9  7  5  3  1 -1 -3 -5 -7 -9
  10: 10  8  6  4  2  0 -2 -4 -6 -8 -10
  ... Reformatted and corrected. (End)
		

Crossrefs

Apart from signs, same as A049581. Cf. A003056, A025581, A002262, A002260, A004736. J_1,J_2: A094053; J_1^2,J_2^2: A141387, A268759. A002415.

Programs

  • Haskell
    a114327 n k = a114327_tabl !! n !! k
    a114327_row n = a114327_tabl !! n
    a114327_tabl = zipWith (zipWith (-)) a025581_tabl a002262_tabl
    -- Reinhard Zumkeller, Aug 09 2014
    
  • Maple
    seq(seq(i-2*j,j=0..i),i=0..30); # Robert Israel, Jan 29 2016
  • Mathematica
    max = 12; a025581 = NestList[Prepend[#, First[#]+1]&, {0}, max]; a002262 = Table[Range[0, n], {n, 0, max}]; a114327 = a025581 - a002262 // Flatten (* Jean-François Alcover, Jan 04 2016 *)
    Flatten[Table[-2 m, {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    T(n,m) = n-m \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from math import isqrt
    def A114327(n): return ((m:=isqrt(k:=n+1<<1))+(k>m*(m+1)))**2+1-k # Chai Wah Wu, Nov 09 2024

Formula

G.f. for the table: Sum_{n, m>=0} T(n,m)*x^n*y^n = (x-y)/((1-x)^2*(1-y)^2).
E.g.f. for the table: Sum_{n, m>=0} T(n,m)x^n/n!*y^m/m! = (x-y)*e^{x+y}.
T(n,k) = A025581(n,k) - A002262(n,k).
a(n+1) = A004736(n) - A002260(n) or a(n+1) = ((t*t+3*t+4)/2-n) - (n-t*(t+1)/2), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012
G.f. as sequence: -(1+x)/(1-x)^2 + Sum_{j>=0} (2*j+1)*x^(j*(j+1)/2) / (1-x). The sum is related to Jacobi theta functions. - Robert Israel, Jan 29 2016
Triangle t(n, k) = n - 2*k, for n >= 0, k = 0..n. (see the Maple program). - Wolfdieter Lang, Feb 05 2018

Extensions

Formula improved by Reinhard Zumkeller, Aug 09 2014

A163358 Inverse permutation to A163357.

Original entry on oeis.org

0, 1, 4, 2, 5, 9, 13, 8, 12, 18, 24, 17, 11, 7, 3, 6, 10, 16, 22, 15, 21, 28, 37, 29, 38, 47, 58, 48, 39, 30, 23, 31, 40, 50, 60, 49, 59, 70, 83, 71, 84, 97, 112, 98, 85, 72, 61, 73, 62, 52, 42, 51, 41, 32, 25, 33, 26, 19, 14, 20, 27, 34, 43, 35, 44, 54, 64, 53, 63, 74, 87
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Comments

abs(A025581(a(n+1)) - A025581(a(n))) + abs(A002262(a(n+1)) - A002262(a(n))) = 1 for all n.

Crossrefs

Inverse: A163357. a(n) = A054239(A163356(n)). One-based version: A163362. See also A163334 and A163336.

A194847 Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; sequence gives i values.

Original entry on oeis.org

2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2011

Keywords

Comments

Each n >= 0 has a unique representation as n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0. This is the combinatorial number system of degree t = 3, where we get [A194847, A194848, A056558]. For degree t = 2 we get [A002024, A002262] and A138036.

Examples

			The i,j,k coordinates for n equal to 0 through 10 are:
0, [2, 1, 0]
1, [3, 1, 0]
2, [3, 2, 0]
3, [3, 2, 1]
4, [4, 1, 0]
5, [4, 2, 0]
6, [4, 2, 1]
7, [4, 3, 0]
8, [4, 3, 1]
9, [4, 3, 2]
10, [5, 1, 0]
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

The [i,j,k] values are [A194847, A194848, A056558], or equivalently [A056556+2, A056557+1, A056558]. See A194849 for the union list of triples.
Cf. also A002024, A002262, A138036.

Programs

  • Maple
    # Given x and a list a, returns smallest i such that x >= a[i].
    whereinlist:=proc(x,a)  local i:
    if whattype(a) <> list then ERROR(`a not a list`); fi:
    for i from 1 to nops(a) do if x < a[i] then break; fi; od:
    RETURN(i-1); end:
    t3:=[seq(binomial(n,3),n=0..50)];
    t2:=[seq(binomial(n,2),n=0..50)];
    t1:=[seq(binomial(n,1),n=0..50)];
    for n from 0 to 200 do
    i3:=whereinlist(n,t3);
    i2:=whereinlist(n-t3[i3],t2);
    i1:=whereinlist(n-t3[i3]-t2[i2],t1);
    L[n]:=[i3-1,i2-1,i1-1];
    od:
    [seq(L[n][1],n=0..200)];
  • Python
    from math import comb
    from sympy import integer_nthroot
    def A194847(n): return (m:=integer_nthroot(6*(n+1),3)[0])+(n>=comb(m+2,3))+1 # Chai Wah Wu, Nov 05 2024

Formula

Equals A056556(n) + 2.

A242422 Numbers in whose prime factorization the indices of primes sum to a triangular number.

Original entry on oeis.org

1, 2, 5, 6, 8, 13, 21, 22, 25, 27, 28, 29, 30, 36, 40, 46, 47, 48, 57, 64, 73, 76, 85, 86, 91, 102, 107, 117, 121, 123, 130, 136, 142, 147, 151, 154, 156, 164, 165, 175, 185, 189, 196, 197, 198, 201, 206, 208, 210, 217, 220, 222, 225, 243, 250, 252, 257, 264, 268, 270, 279, 280, 296, 298, 299, 300
Offset: 1

Views

Author

Antti Karttunen, May 16 2014

Keywords

Comments

Numbers k such that A010054(A056239(k)) is one, or equally, that A002262(A056239(k)) is zero.
In "Bulgarian solitaire" a deck of cards or another finite set of objects is divided into one or more piles, and the "Bulgarian operation" is performed by taking one card from each pile, and making a new pile of them. The question originally posed was: on what condition the resulting partitions will eventually reach a fixed point, that is, a collection of piles that will be unchanged by the operation. See Martin Gardner reference and the Wikipedia-page.
This sequence answers the question when we implement the operation on the partition list A112798: These are all such numbers that starting iterating A242424 from them leads eventually to a fixed point, which will be one of the primorial numbers, A002110.
Contains the same terms as rows of A215366 indexed with triangular numbers (A000217: 0, 1, 3, 6, ...), although not in the same order. {1}, {2}, {5, 6, 8}, {13, 21, 22, 25, 27, 28, 30, 36, 40, 48, 64}, etc.
Heinz numbers of integer partitions of triangular numbers. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). - Gus Wiseman, Nov 13 2018

Examples

			1 is present as it has an empty factorization, for which the sum of prime indices is zero, and zero is also a triangular number.
2 = p_1 is present as 1 is a triangular number.
6 = p_1 * p_2 is present, as 1+2 = 3 is a triangular number.
300 = 2*2*3*5*5 = p_1 * p_1 * p_2 * p_3 * p_3 is present, as 1+1+2+3+3 = 10 is a triangular number.
Any primorial number p_1 * p_2 * p_3 * ... * p_n is present, as 1+2+3+...+n is by definition a triangular number.
The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (), (1), (3), (2,1), (1,1,1), (6), (4,2), (5,1), (3,3), (2,2,2), (4,1,1), (10), (3,2,1), (2,2,1,1), (3,1,1,1), (9,1), (15), (2,1,1,1,1), (8,2), (1,1,1,1,1,1), (21), (8,1,1), (7,3), (14,1), (6,4). - _Gus Wiseman_, Nov 13 2018
		

References

  • Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.

Crossrefs

Complement: A242423.
A002110 (primorial numbers) is a subsequence.

Programs

  • Mathematica
    triQ[n_]:=Module[{k,i},For[k=n;i=1,k>0,i++,k-=i];k==0];
    Select[Range[100],triQ[Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]]&] (* Gus Wiseman, Nov 13 2018 *)

A268715 Square array A(i,j) = A003188(A006068(i) + A006068(j)), read by antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 6, 6, 3, 4, 2, 5, 2, 4, 5, 12, 7, 7, 12, 5, 6, 4, 15, 6, 15, 4, 6, 7, 7, 13, 13, 13, 13, 7, 7, 8, 5, 4, 12, 9, 12, 4, 5, 8, 9, 24, 12, 5, 11, 11, 5, 12, 24, 9, 10, 8, 27, 4, 14, 10, 14, 4, 27, 8, 10, 11, 11, 25, 25, 10, 15, 15, 10, 25, 25, 11, 11, 12, 9, 8, 24, 29, 14, 12, 14, 29, 24, 8, 9, 12, 13, 13, 24, 9, 31, 31, 13, 13, 31, 31, 9, 24, 13, 13
Offset: 0

Views

Author

Antti Karttunen, Feb 12 2016

Keywords

Comments

Each row n is row A006068(n) of array A268820 without its A006068(n) initial terms.

Examples

			The top left [0 .. 15] x [0 .. 15] section of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15
   1,  3,  6,  2, 12,  4,  7,  5, 24,  8, 11,  9, 13, 15, 10, 14
   2,  6,  5,  7, 15, 13,  4, 12, 27, 25,  8, 24, 14, 10,  9, 11
   3,  2,  7,  6, 13, 12,  5,  4, 25, 24,  9,  8, 15, 14, 11, 10
   4, 12, 15, 13,  9, 11, 14, 10, 29, 31, 26, 30,  8, 24, 27, 25
   5,  4, 13, 12, 11, 10, 15, 14, 31, 30, 27, 26,  9,  8, 25, 24
   6,  7,  4,  5, 14, 15, 12, 13, 26, 27, 24, 25, 10, 11,  8,  9
   7,  5, 12,  4, 10, 14, 13, 15, 30, 26, 25, 27, 11,  9, 24,  8
   8, 24, 27, 25, 29, 31, 26, 30, 17, 19, 22, 18, 28, 20, 23, 21
   9,  8, 25, 24, 31, 30, 27, 26, 19, 18, 23, 22, 29, 28, 21, 20
  10, 11,  8,  9, 26, 27, 24, 25, 22, 23, 20, 21, 30, 31, 28, 29
  11,  9, 24,  8, 30, 26, 25, 27, 18, 22, 21, 23, 31, 29, 20, 28
  12, 13, 14, 15,  8,  9, 10, 11, 28, 29, 30, 31, 24, 25, 26, 27
  13, 15, 10, 14, 24,  8, 11,  9, 20, 28, 31, 29, 25, 27, 30, 26
  14, 10,  9, 11, 27, 25,  8, 24, 23, 21, 28, 20, 26, 30, 29, 31
  15, 14, 11, 10, 25, 24,  9,  8, 21, 20, 29, 28, 27, 26, 31, 30
		

Crossrefs

Main diagonal: A001969.
Row 0, column 0: A001477.
Row 1, column 1: A268717.
Antidiagonal sums: A268837.
Cf. A268719 (the lower triangular section).
Cf. also A268725.

Programs

Formula

A(i,j) = A003188(A006068(i) + A006068(j)) = A003188(A268714(i,j)).
A(row,col) = A268820(A006068(row), (A006068(row)+col)).

A053616 Pyramidal sequence: distance to nearest triangular number.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1
Offset: 0

Views

Author

Henry Bottomley, Mar 20 2000

Keywords

Comments

From Wolfdieter Lang, Oct 24 2020: (Start)
If this sequence is written with offset 1 as a number triangle T(n, k), with n the length of row n, for n >= 1, then row n gives the primitive period of the periodic sequence {k (mod* n)}_{k>=0}, where k (mod* n) = k (mod n) if k <= floor(n/2) and otherwise it is -k (mod n). Such a modified modular relation mod* n has been used by Brändli and Beyne, but for integers relative prime to n.
These periodic sequences are given in A000007, A000035, A011655, A007877, |A117444|, A260686, A279316, for n = 1, 2, ..., 7. For n = 10 A271751, n = 12 A271832, n = 14 A279313. (End)

Examples

			a(12) = |12 - 10| = 2 since 10 is the nearest triangular number to 12.
From _M. F. Hasler_, Dec 06 2019: (Start)
Ignoring a(0) = 0, the sequence can be written as triangle indexed by m >= k >= 1, in which case the terms are (m - |k - |m-k||)/2, as follows:
   0,      (Row 0: ignore)
   0,      (Row m=1, k=1: For k=m, m - |k - |m-k|| = m - |m - 0| = 0.)
   1, 0,        (Row m=2: for k=1, |m-k| = 1, k-|m-k| = 0, m-0 = 2, (...)/2 = 1.)
   1, 1, 0,
   1, 2, 1, 0,    (Row m=4: for k=2, we have twice the value of (m=2, k=1) => 2.)
   1, 2, 2, 1, 0,
   (...)
This is related to the non-associative operation A049581(x,y) = |x - y| =: x @ y. Specifically, @ is commutative and any x is its own inverse, so non-associativity of @ can be measured through the commutator ((x @ y) @ y) @ x which equals twice the element indexed {m,k} = {x,y} in the above triangle.
(End)
		

Crossrefs

a(n) = abs(A305258(n)).

Programs

  • Mathematica
    a[n_] := (k =.; k = Reduce[k > 0 && k*(k+1)/2 == n, Reals][[2]] // Floor; Min[(k+1)*(k+2)/2 - n, n - k*(k+1)/2]); Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jan 08 2013 *)
    Module[{trms=120,t},t=Accumulate[Range[Ceiling[(Sqrt[8*trms+1]-1)/2]]]; Join[{0},Flatten[Table[Abs[Nearest[t,n][[1]]-n],{n,trms}]]]] (* Harvey P. Dale, Nov 08 2013 *)
  • PARI
    print1(x=0, ", ");for(stride=1,13,x+=stride;y=x+stride+1;for(k=x,y-1,print1(min(k-x,y-k), ", "))) \\ Hugo Pfoertner, Jun 02 2018
    
  • PARI
    apply( {a(n)=if(n,-abs(n*2-(n=sqrtint(8*n-7)\/2)^2)+n)\2}, [0..40]) \\ same as (i - |j - |i-j||)/2 with i=sqrtint(8*n-7)\/2, j=n-i(i-1)/2. - M. F. Hasler, Dec 06 2019
    
  • Python
    from math import isqrt
    def A053616(n): return abs((m:=isqrt(k:=n<<1))*(m+1)-k)>>1 # Chai Wah Wu, Jul 15 2022

Formula

a(n) = (x - |y - |x-y||)/2, when (x,y) is the n-th element in the triangle x >= y >= 1. - M. F. Hasler, Dec 06 2019
a(n) = (1/2)*abs(t^2 + t - 2*n), where t = floor(sqrt(2*n)) = A172471. - Ridouane Oudra, Dec 15 2021
From Ctibor O. Zizka, Nov 12 2024: (Start)
For s >= 1, t from [0, s] :
a(2*s^2 + t) = s - t.
a(2*s^2 - t) = s - t.
a(2*s^2 + 2*s - t) = s - t.
a(2*s^2 + 2*s + 1 + t) = s - t. (End)
Previous Showing 61-70 of 240 results. Next