A365193
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^3).
Original entry on oeis.org
1, 1, 6, 49, 463, 4760, 51702, 583712, 6781774, 80555066, 973813974, 11941861079, 148191437719, 1857464450449, 23481830726334, 299056887494427, 3833349330581255, 49416395972195630, 640256115370243620, 8332835556325119938, 108890550249605779116
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(n-1, n-k)/(3*n+2*k+1));
A382001
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^6.
Original entry on oeis.org
1, 1, 16, 462, 20672, 1261400, 97728672, 9190016416, 1016963389696, 129485497897728, 18648682990461440, 2997567408967391744, 531985786683988512768, 103321584851593487961088, 21798243872991807130685440, 4964302861788729054456729600, 1213816740632458735310221672448
Offset: 0
A386567
a(n) = Sum_{k=0..n-1} binomial(6*k-1,k) * binomial(6*n-6*k,n-k-1).
Original entry on oeis.org
0, 1, 17, 268, 4129, 62955, 954392, 14417376, 217279857, 3269099590, 49125066135, 737516631908, 11064270530632, 165889863957065, 2486052264852180, 37241727274394640, 557707191712371729, 8349517132932620730, 124971965902300790390, 1870139909398530770760
Offset: 0
(1/5) * log( Sum_{k>=0} binomial(6*k-1,k)*x^k ) = x + 17*x^2/2 + 268*x^3/3 + 4129*x^4/4 + 12591*x^5 + ...
-
a(n) = sum(k=0, n-1, binomial(6*k-1, k)*binomial(6*n-6*k, n-k-1));
-
my(N=20, x='x+O('x^N), g=sum(k=0, N, binomial(6*k, k)/(5*k+1)*x^k)); concat(0, Vec(g*(g-1)/(6-5*g)^2))
A206290
G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/(1 + x^k) ).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 12, 17, 29, 44, 77, 114, 218, 330, 617, 987, 1913, 2968, 6068, 9500, 19263, 31399, 64268, 101702, 218891, 348559, 735823, 1205239, 2576727, 4119884, 9100854, 14588992, 31841260, 52163378, 114485092, 183947681, 414704366, 667453931, 1487920000
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 12*x^6 + 17*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x/(1 + x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + x^6 +...+ x^(n+1) +...
G_2(x) = x + x^3 + 2*x^5 + 5*x^7 + 14*x^9 +...+ A000108(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 3*x^7 + 12*x^10 + 55*x^13 +...+ A001764(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 4*x^9 + 22*x^13 + 140*x^17 +...+ A002293(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 5*x^11 + 35*x^16 + 285*x^21 +...+ A002294(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 6*x^13 + 51*x^19 + 506*x^25 +...+ A002295(n)*x^(6*n+1) +...
G_7(x) = x + x^8 + 7*x^15 + 70*x^22 + 819*x^29 +...+ A002296(n)*x^(7*n+1) +...
Note that G_n(x) = x + x*G_n(x)^n.
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x/(1+x^k+x*O(x^n))))),n)}
for(n=0,45,print1(a(n),", "))
A226910
a(n) = Sum_{k=0..floor(n/5)} binomial(n,5*k)*binomial(6*k,k)/(5*k+1).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 259, 529, 1189, 3004, 8009, 21073, 53233, 129813, 312733, 763573, 1915251, 4914736, 12720841, 32800186, 83869501, 213261712, 542609237, 1388542312, 3579043987, 9273567337, 24075321925, 62475528190, 161969731985, 419914766965
Offset: 0
-
Table[Sum[Binomial[n,5*k]*Binomial[6*k,k]/(5*k+1),{k,0,Floor[n/5]}],{n,0,20}] (* Vaclav Kotesovec, Jun 28 2013 *)
-
a(n)=sum(k=0,n\5,binomial(n,5*k)*binomial(6*k,k)/(5*k+1)) \\ Charles R Greathouse IV, Jun 24 2013
A233827
a(n) = 8*binomial(6*n+8,n)/(6*n+8).
Original entry on oeis.org
1, 8, 76, 800, 8990, 105672, 1283464, 15981504, 202927725, 2617624680, 34206162848, 451872681728, 6024664312030, 80964348872400, 1095590286231120, 14915165412813184, 204140673966231870, 2807362363541687280, 38772186055550141700
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[8*Binomial(6*n+8, n)/(6*n+8): n in [0..30]];
-
Table[8 Binomial[6 n + 8, n]/(6 n + 8), {n, 0, 30}]
-
a(n) = 8*binomial(6*n+8,n)/(6*n+8);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/8))^8+x*O(x^n)); polcoeff(B, n)}
A233829
a(n) = 3*binomial(6*n+9,n)/(2*n+3).
Original entry on oeis.org
1, 9, 90, 975, 11160, 132867, 1629012, 20430900, 260907075, 3381098545, 44352058608, 587787511779, 7858257798300, 105855415586550, 1435361957277480, 19576154604317304, 268364706225271110, 3695862686045572350, 51108790709588823150
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[3*Binomial(6*n+9, n)/(2*n+3): n in [0..30]];
-
Table[3 Binomial[6 n + 9, n]/(2 n + 3), {n, 0, 30}]
-
a(n) = 3*binomial(6*n+9,n)/(2*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/3))^9+x*O(x^n)); polcoeff(B, n)}
A233830
a(n) = 5*binomial(6*n+10,n)/(3*n+5).
Original entry on oeis.org
1, 10, 105, 1170, 13640, 164502, 2036265, 25727800, 330482295, 4303216330, 56672074888, 753573733050, 10103474312100, 136435868978220, 1854009194816745, 25333847134998864, 347880174736462550, 4798137522234602700, 66441427922465470095, 923346006310186106010, 12873823246049001482400
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[5*Binomial(6*n+10, n)/(3*n+5): n in [0..30]];
-
Table[5 Binomial[6 n + 10, n]/(3 n + 5), {n, 0, 30}]
-
a(n) = 5*binomial(6*n+10,n)/(3*n+5);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/5))^10+x*O(x^n)); polcoeff(B, n)}
A235534
a(n) = binomial(6*n, 2*n) / (4*n + 1).
Original entry on oeis.org
1, 3, 55, 1428, 43263, 1430715, 50067108, 1822766520, 68328754959, 2619631042665, 102240109897695, 4048514844039120, 162250238001816900, 6568517413771094628, 268225186597703313816, 11034966795189838872624, 456949965738717944767791
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2), this sequence (l=4, k=2),
A235536 (l=6, k=2),
A187357 (l=3, k=3),
A235535 (l=6, k=3).
-
l:=4; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
-
Table[Binomial[6 n, 2 n]/(4 n + 1), {n, 0, 20}]
A235535
a(n) = binomial(9*n, 3*n) / (6*n + 1).
Original entry on oeis.org
1, 12, 1428, 246675, 50067108, 11124755664, 2619631042665, 642312451217745, 162250238001816900, 41932353590942745504, 11034966795189838872624, 2946924270225408943665279, 796607831560617902288322405, 217550867863011281855594752680
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2),
A235534 (l=4, k=2),
A235536 (l=6, k=2),
A187357 (l=3, k=3), this sequence (l=6, k=3).
-
l:=6; k:=3; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
-
seq(binomial(9*n,3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
-
Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]
Comments