A346937
a(n) = Sum_{d|n} mu(n/d) * binomial(6*d,d) / (5*d+1).
Original entry on oeis.org
1, 5, 50, 500, 5480, 62776, 749397, 9203128, 115607259, 1478308780, 19180049927, 251857056364, 3340843549854, 44700484300317, 602574657421585, 8175951649914160, 111572030260242089, 1530312970224714489, 21085148778264281864, 291705220703240850760, 4050527291832419432577
Offset: 1
-
Table[Sum[MoebiusMu[n/d] Binomial[6 d, d]/(5 d + 1), {d, Divisors[n]}], {n, 21}]
A349584
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^4 * A(x)^6.
Original entry on oeis.org
1, 3, 14, 107, 1106, 13173, 168820, 2264298, 31356818, 444803666, 6429510234, 94356870748, 1402149248128, 21055387206719, 319007902203196, 4870481885025752, 74858763620576738, 1157339247553310574, 17985974981514604660, 280813589679135551721
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^4 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[6 k, k] 2^(n - k)/(5 k + 1), {k, 0, n}], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(6*k,k)*2^(n-k)/(5*k+1)); \\ Michel Marcus, Nov 23 2021
A365194
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^6).
Original entry on oeis.org
1, 1, 6, 52, 529, 5889, 69462, 853013, 10791018, 139659604, 1840435530, 24611295075, 333132371248, 4555465710569, 62839303262352, 873363902976309, 12218178082489873, 171918448407833112, 2431415226089290680, 34544425914499450493, 492807213597429920649
Offset: 0
-
a(n) = sum(k=0, n, binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));
A052795
a(n) = (6*n)!/(5*n+1)!.
Original entry on oeis.org
1, 1, 12, 306, 12144, 657720, 45239040, 3776965920, 371090522880, 41951580652800, 5364506808460800, 765606216965990400, 120639963305775513600, 20803502274492921984000, 3896911902445736638464000, 787971434323820421362688000, 171063718698166603304067072000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Prod(Z,S,S,S,S,S),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # end of program
seq((6*n)!/(5*n+1)!, n=0..20); # Mark van Hoeij, May 29 2013
-
a(n) = (6*n)!/(5*n+1)!; \\ Joerg Arndt, May 29 2013
-
from sympy import ff
def A052795(n): return ff(6*n,n-1) # Chai Wah Wu, Sep 01 2023
Accidentally removed a(0) reinserted by
Georg Fischer, May 09 2021
A235536
a(n) = binomial(8*n, 2*n) / (6*n + 1).
Original entry on oeis.org
1, 4, 140, 7084, 420732, 27343888, 1882933364, 134993766600, 9969937491420, 753310723010608, 57956002331347120, 4524678117939182220, 357557785658996609700, 28545588568201512137904, 2298872717007844035521848, 186533392975795702301759056
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2),
A235534 (l=4, k=2), this sequence (l=6, k=2),
A187357 (l=3, k=3),
A235535 (l=6, k=3).
-
l:=6; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
-
Table[Binomial[8 n, 2 n]/(6 n + 1), {n, 0, 20}]
A381989
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 2, 19, 514, 22621, 1369546, 105616639, 9901346554, 1093292035609, 138977379784882, 19990424969236171, 3209995501651871890, 569216406245186726965, 110476637766622355475898, 23294266811686640511534199, 5302371488162151660366545866, 1295920217231693678343467474353
Offset: 0
A384943
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^6.
Original entry on oeis.org
1, 1, 6, -9, -244, -39, 11262, 36971, -268890, -3724293, -24899558, 159971919, 3851093928, 9663394063, -197371002600, -2108992348026, -9447769941412, 111942512192787, 2253965670439788, 7917705821761592, -100488750700889250, -1520857626228210483
Offset: 0
-
a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 6*j)/j));
A206289
G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x*(1 - x^k) ).
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 73, 214, 679, 2189, 7331, 24867, 86269, 302144, 1072621, 3837768, 13853674, 50319789, 183941789, 675731105, 2494370326, 9244865453, 34394851701, 128390336942, 480749791772, 1805161153783, 6795744287172, 25643914891284, 96980809856731
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 73*x^6 + 214*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x*(1 - x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 +...+ A000108(n)*x^(n+1) +...
G_2(x) = x + x^3 + 3*x^5 + 12*x^7 + 55*x^9 +...+ A001764(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 4*x^7 + 22*x^10 + 140*x^13 +...+ A002293(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 5*x^9 + 35*x^13 + 285*x^17 +...+ A002294(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 6*x^11 + 51*x^16 + 506*x^21 +...+ A002295(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 7*x^13 + 70*x^19 + 819*x^25 +...+ A002296(n)*x^(6*n+1) +...
Note that G_n(x) = x + x*G_n(x)^(n+1).
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x*(1-x^k+x*O(x^n))))),n)}
for(n=0,35,print1(a(n),", "))
A385497
a(n) = Sum_{k=0..n} binomial(6*n+1,k).
Original entry on oeis.org
1, 8, 92, 1160, 15276, 206368, 2835200, 39419864, 553000876, 7811733392, 110962066532, 1583318009160, 22677731944032, 325849065291056, 4694837606889424, 67803714186207280, 981265566082447276, 14227018304102548368, 206608052310739404392, 3004777578508008253808
Offset: 0
-
[&+[Binomial(6*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 18 2025
-
Table[Sum[Binomial[6*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 18 2025 *)
-
a(n) = sum(k=0, n, binomial(6*n+1, k));
A385719
Expansion of B(x)/sqrt(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.
Original entry on oeis.org
1, 4, 38, 428, 5204, 66104, 863840, 11515308, 155779966, 2131436392, 29426804398, 409254436452, 5726378247412, 80535621269208, 1137609359823936, 16130112288879248, 229462608491483364, 3273749607191060480, 46826932120849617128, 671341041479214814160, 9644654058165119642624
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 2*(Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] - 1)/3], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)
Comments