cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 72 results. Next

A346937 a(n) = Sum_{d|n} mu(n/d) * binomial(6*d,d) / (5*d+1).

Original entry on oeis.org

1, 5, 50, 500, 5480, 62776, 749397, 9203128, 115607259, 1478308780, 19180049927, 251857056364, 3340843549854, 44700484300317, 602574657421585, 8175951649914160, 111572030260242089, 1530312970224714489, 21085148778264281864, 291705220703240850760, 4050527291832419432577
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Comments

Moebius transform of A002295.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Binomial[6 d, d]/(5 d + 1), {d, Divisors[n]}], {n, 21}]

A349584 G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^4 * A(x)^6.

Original entry on oeis.org

1, 3, 14, 107, 1106, 13173, 168820, 2264298, 31356818, 444803666, 6429510234, 94356870748, 1402149248128, 21055387206719, 319007902203196, 4870481885025752, 74858763620576738, 1157339247553310574, 17985974981514604660, 280813589679135551721
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 22 2021

Keywords

Comments

Second binomial transform of A002295.

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^4 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n, k] Binomial[6 k, k] 2^(n - k)/(5 k + 1), {k, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*binomial(6*k,k)*2^(n-k)/(5*k+1)); \\ Michel Marcus, Nov 23 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(6*k,k) * 2^(n-k) / (5*k+1).
a(n) = 2^n*F([1/6, 1/3, 1/2, 2/3, 5/6, -n], [2/5, 3/5, 4/5, 1, 6/5], -3^6*(2/5)^5), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 22 2021
a(n) ~ 2^(n - 15/2) * 26453^(n + 3/2) / (6561 * sqrt(3*Pi) * n^(3/2) * 5^(5*n + 3/2)). - Vaclav Kotesovec, Nov 26 2021

A365194 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^6).

Original entry on oeis.org

1, 1, 6, 52, 529, 5889, 69462, 853013, 10791018, 139659604, 1840435530, 24611295075, 333132371248, 4555465710569, 62839303262352, 873363902976309, 12218178082489873, 171918448407833112, 2431415226089290680, 34544425914499450493, 492807213597429920649
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));

Formula

a(n) = Sum_{k=0..n} binomial(6*n-k+1,k) * binomial(n-1,n-k)/(6*n-k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(5*n+2*k+1,k) * binomial(n-1,n-k)/(5*n+2*k+1).
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(6*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Dec 26 2024

A052795 a(n) = (6*n)!/(5*n+1)!.

Original entry on oeis.org

1, 1, 12, 306, 12144, 657720, 45239040, 3776965920, 371090522880, 41951580652800, 5364506808460800, 765606216965990400, 120639963305775513600, 20803502274492921984000, 3896911902445736638464000, 787971434323820421362688000, 171063718698166603304067072000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(Z,S,S,S,S,S),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # end of program
    seq((6*n)!/(5*n+1)!, n=0..20);  # Mark van Hoeij, May 29 2013
  • PARI
    a(n) = (6*n)!/(5*n+1)!; \\ Joerg Arndt, May 29 2013
    
  • Python
    from sympy import ff
    def A052795(n): return ff(6*n,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: RootOf(-_Z+_Z^6*x+1).
D-finite Recurrence: {a(1)=1, a(2)=12, (-720-9864*n-48600*n^2-110160*n^3-116640*n^4-46656*n^5)*a(n)+(3125*n^4+9375*n^3+10000*n^2+4500*n+720)*a(n+1), a(6)=45239040, a(3)=306, a(4)=12144, a(5)=657720}.
1/25*3^(1/2)*(5+5^(1/2))^(1/2)*(5-5^(1/2))^(1/2)*Pi^(1/2) *GAMMA(2*n+37/3) *GAMMA(2*n+38/3)/GAMMA(n+34/5)/GAMMA(n+33/5)/GAMMA(n+32/5) /GAMMA(n+36/5) *GAMMA(n+13/2)*3125^(-6-n)*2916^(n+6).
a(n) = (6*n)!/(5*n+1)!. - Mark van Hoeij, May 29 2013
E.g.f.: exp( 1/6 * Sum_{k>=1} binomial(6*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002295(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^5).
a(n) = Sum_{k=0..n} (5*n+1)^(k-1) * |Stirling1(n,k)|. (End)

Extensions

New name using Mark van Hoeij's formula from Joerg Arndt, Feb 18 2019
Accidentally removed a(0) reinserted by Georg Fischer, May 09 2021

A235536 a(n) = binomial(8*n, 2*n) / (6*n + 1).

Original entry on oeis.org

1, 4, 140, 7084, 420732, 27343888, 1882933364, 134993766600, 9969937491420, 753310723010608, 57956002331347120, 4524678117939182220, 357557785658996609700, 28545588568201512137904, 2298872717007844035521848, 186533392975795702301759056
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=6, k=2 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
First bisection of A002293.
Also, the sequence is between A002296 and A235535.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), this sequence (l=6, k=2), A187357 (l=3, k=3), A235535 (l=6, k=3).

Programs

  • Magma
    l:=6; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
  • Mathematica
    Table[Binomial[8 n, 2 n]/(6 n + 1), {n, 0, 20}]

Formula

a(n) = A124753(6*n).
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/8,1/4,3/8,5/8,3/4,7/8; 1/3,1/2,2/3,5/6,7/6; 65536*x/729).
a(n) ~ 2^(16*n-1)/(sqrt(Pi)*3^(6*n+3/2)*n^(3/2)). (End)

A381989 E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 19, 514, 22621, 1369546, 105616639, 9901346554, 1093292035609, 138977379784882, 19990424969236171, 3209995501651871890, 569216406245186726965, 110476637766622355475898, 23294266811686640511534199, 5302371488162151660366545866, 1295920217231693678343467474353
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*k+1)^(n-k)*binomial(6*k+1, k)/((6*k+1)*(n-k)!));

Formula

Let F(x) be the e.g.f. of A382001. F(x) = B(x*A(x)^2) = exp( 1/4 * Sum_{k>=1} binomial(4*k,k) * (x*A(x)^2)^k/k ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(n-k) * A002295(k)/(n-k)!.

A384943 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^6.

Original entry on oeis.org

1, 1, 6, -9, -244, -39, 11262, 36971, -268890, -3724293, -24899558, 159971919, 3851093928, 9663394063, -197371002600, -2108992348026, -9447769941412, 111942512192787, 2253965670439788, 7917705821761592, -100488750700889250, -1520857626228210483
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 6*j)/j));

Formula

See A384946.

A206289 G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x*(1 - x^k) ).

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 73, 214, 679, 2189, 7331, 24867, 86269, 302144, 1072621, 3837768, 13853674, 50319789, 183941789, 675731105, 2494370326, 9244865453, 34394851701, 128390336942, 480749791772, 1805161153783, 6795744287172, 25643914891284, 96980809856731
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Compare to the g.f. of partitions of n into distinct parts (A000009): Sum_{n>=0} Product_{k=1..n} x*(1 + x^k).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 73*x^6 + 214*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x*(1 - x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 +...+ A000108(n)*x^(n+1) +...
G_2(x) = x + x^3 + 3*x^5 + 12*x^7 + 55*x^9 +...+ A001764(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 4*x^7 + 22*x^10 + 140*x^13 +...+ A002293(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 5*x^9 + 35*x^13 + 285*x^17 +...+ A002294(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 6*x^11 + 51*x^16 + 506*x^21 +...+ A002295(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 7*x^13 + 70*x^19 + 819*x^25 +...+ A002296(n)*x^(6*n+1) +...
Note that G_n(x) = x + x*G_n(x)^(n+1).
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x*(1-x^k+x*O(x^n))))),n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} Product_{k=1..n} G_k(x), where G_n(x) is defined by:
(1) G_n(x) = Series_Reversion( x*(1 - x^n) ),
(2) G_n(x) = x + x*G_n(x)^(n+1),
(3) G_n(x) = Sum_{k>=0} binomial(n*k+k+1, k) * x^(n*k+1) / (n*k+k+1).
a(n) ~ c * 4^n / n^(3/2), where c = 0.19197348199... . - Vaclav Kotesovec, Nov 06 2014

A385497 a(n) = Sum_{k=0..n} binomial(6*n+1,k).

Original entry on oeis.org

1, 8, 92, 1160, 15276, 206368, 2835200, 39419864, 553000876, 7811733392, 110962066532, 1583318009160, 22677731944032, 325849065291056, 4694837606889424, 67803714186207280, 981265566082447276, 14227018304102548368, 206608052310739404392, 3004777578508008253808
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(6*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 18 2025
  • Mathematica
    Table[Sum[Binomial[6*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 18 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(6*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(6*n+1)/(1-x).
a(n) = [x^n] 1/((1-x)^(5*n+1) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(6*n-k,n-k).
G.f.: 1/(1 - 4*x*g^4*(3-g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: g^2/((2-g) * (6-5*g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.
a(n) ~ 2^(6*n-1) * 3^(6*n + 3/2) / (sqrt(Pi*n) * 5^(5*n + 1/2)). - Vaclav Kotesovec, Aug 19 2025
D-finite with recurrence +5*n*(5*n-3) *(25275337086729240289198339046875*n +471647298106881091699147254457046) *(5*n-1)*(5*n-4)*(5*n-2)*a(n) +(78985428396028875903744809521484375*n^6 -559942234844855804767211877804090453801*n^5 +3587636672285250929619857349305543417315*n^4 -10153151347942687598200945831585305558855*n^3 +14794114656715293872778407292185015920550*n^2 -10846691360081598422810600143797325763664*n +3179147242764665659301361496311050364480)*a(n-1) +40*(916451705547792050816664342989042382392*n^6 -15754440652132350078674083937326518806004*n^5 +117614110896134855700514819789186651267682*n^4 -471111363407608954402735569277858473721059*n^3 +1053743992048348087929158710510276422876431*n^2 -1242809524683997363700671579060256757555078*n +603414490131980309336751304501155726403152) *a(n-2) +3072*(-950768355029313182341332806167821761828*n^6 +17097100921628721474237101055297828968024*n^5 -128090998271831890487248970509140383514230*n^4 +509544263618626898681417576914870842148685*n^3 -1132270964907780344616429736070172799129247*n^2 +1330655887974191637410201798934319046990726*n -645481184978535641217111809931780144149880) *a(n-3) +884736*(3*n-11) *(6*n-17) *(61801507754400081418308631750717123*n -123657551673181017806623428016627104) *(6*n-19)*(3*n-10)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Aug 26 2025

A385719 Expansion of B(x)/sqrt(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.

Original entry on oeis.org

1, 4, 38, 428, 5204, 66104, 863840, 11515308, 155779966, 2131436392, 29426804398, 409254436452, 5726378247412, 80535621269208, 1137609359823936, 16130112288879248, 229462608491483364, 3273749607191060480, 46826932120849617128, 671341041479214814160, 9644654058165119642624
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 2*(Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] - 1)/3], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)

Formula

Sum_{k=0..n} a(k) * a(n-k) = A385497(n).
G.f.: 1/sqrt(1 - 4*x*g^4*(3-g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: g/sqrt((2-g) * (6-5*g)) where g = 1+x*g^6 is the g.f. of A002295.
a(n) ~ 2^(6*n - 1/2) * 3^(6*n + 3/4) / (Gamma(1/4) * n^(3/4) * 5^(5*n + 1/4)) * (1 + 7*Gamma(1/4)^2/(48*Pi*sqrt(30*n))). - Vaclav Kotesovec, Aug 20 2025
Previous Showing 61-70 of 72 results. Next