A233907
9*binomial(7*n+9, n)/(7*n+9).
Original entry on oeis.org
1, 9, 99, 1218, 16065, 222138, 3178140, 46656324, 698868216, 10639125640, 164128169205, 2560224004884, 40314178429707, 639948824981928, 10230035192533800, 164541833894991240, 2660919275605834701, 43239781879996449825, 705687913212419321800, 11561996402992103418000, 190100812111989146008641
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[9*Binomial(7*n+9, n)/(7*n+9): n in [0..30]];
-
Table[9 Binomial[7 n + 9, n]/(7 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(7*n+9,n)/(7*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/9))^9+x*O(x^n)); polcoeff(B, n)}
A233908
10*binomial(7*n+10,n)/(7*n+10).
Original entry on oeis.org
1, 10, 115, 1450, 19425, 271502, 3915100, 57821940, 870238200, 13298907050, 205811513765, 3218995093860, 50802419972395, 808016193159000, 12938696992921000, 208419656266988904, 3374960506795660365, 54907659530154222000, 897060906625956765000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
-
[10*Binomial(7*n+10, n)/(7*n+10): n in [0..30]]; // Vincenzo Librandi, Dec 23 2013
-
Table[10 Binomial[7 n + 10, n]/(7 n + 10), {n, 0, 40}] (* Vincenzo Librandi, Dec 23 2013 *)
-
a(n) = 10*binomial(7*n+10,n)/(7*n+10);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/10))^10+x*O(x^n)); polcoeff(B, n)}
A346768
a(n) = Sum_{k=0..n} Stirling2(n,k) * binomial(7*k,k) / (6*k + 1).
Original entry on oeis.org
1, 1, 8, 92, 1289, 20518, 358611, 6749268, 135095116, 2851394415, 63066764910, 1454808403309, 34869538474423, 865771965143262, 22211885496614803, 587583912259110350, 15998031596388750905, 447598845624472993496, 12850922242548662924046, 378153449033278630907275
Offset: 0
-
Table[Sum[StirlingS2[n, k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Sum[(Binomial[7 k, k]/(6 k + 1)) x^k/Product[1 - j x, {j, 0, k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 19; CoefficientList[Series[HypergeometricPFQ[{1/7, 2/7, 3/7, 4/7, 5/7, 6/7}, {1/3, 1/2, 2/3, 5/6,1, 7/6}, 823543 (Exp[x] - 1)/46656], {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = sum(k=0, n, stirling(n, k, 2)*binomial(7*k, k)/(6*k + 1)); \\ Michel Marcus, Aug 02 2021
A349302
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^6)).
Original entry on oeis.org
1, 0, 1, 6, 43, 321, 2500, 20096, 165621, 1392397, 11896823, 103014141, 902035660, 7974080834, 71070247438, 637937825112, 5761970031357, 52329993278856, 477588786637264, 4377832437503643, 40288077072190109, 372086539388626537, 3447632819399550915
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^6)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 5 k, 6 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 22}]
A349363
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^7 / (1 + x).
Original entry on oeis.org
1, 1, 6, 57, 629, 7589, 96942, 1288729, 17643920, 247089010, 3522891561, 50964747400, 746241617226, 11038241689188, 164696773030055, 2475832560808858, 37462189433509758, 570112127356828846, 8720472842436039280, 133997057207982607092, 2067402314984991892461
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^7/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
A365218
G.f. satisfies A(x) = 1 + x*A(x)^6 / (1 + x*A(x)^6).
Original entry on oeis.org
1, 1, 5, 34, 265, 2232, 19766, 181300, 1706737, 16392049, 159959240, 1581278838, 15800619070, 159321921844, 1618981274136, 16562211506496, 170426473666497, 1762771226922775, 18316562635133813, 191104193378725552, 2001224271292820200
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(6*n+1, k)*binomial(n-1, n-k))/(6*n+1);
A346581
a(n) = (1/(7*n)) * Sum_{d|n} mu(n/d) * binomial(7*d,d).
Original entry on oeis.org
1, 6, 63, 728, 9275, 124866, 1753073, 25365600, 375677595, 5667202850, 86775157139, 1345153422600, 21069043965983, 332927798516614, 5301031234076325, 84967018610221440, 1369846562874360886, 22199151535757655354, 361411377745122110421, 5908312923789590118600
Offset: 1
-
Table[(1/(7 n)) Sum[MoebiusMu[n/d] Binomial[7 d, d], {d, Divisors[n]}], {n, 20}]
-
a(n) = sumdiv(n, d, moebius(n/d)*binomial(7*d,d))/(7*n); \\ Michel Marcus, Jul 24 2021
A346683
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(7*k,k) / (6*k + 1).
Original entry on oeis.org
1, 0, 7, 63, 756, 9716, 132062, 1865626, 27124049, 403197584, 6100155272, 93626517858, 1454221328232, 22815183746508, 361030984965596, 5755543515895284, 92350704790963431, 1490287557170676816, 24171116970619575559, 393808998160695560841, 6442255541764422795759
Offset: 0
-
Table[Sum[(-1)^(n - k) Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^6 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(7*k, k)/(6*k + 1)); \\ Michel Marcus, Jul 29 2021
A206290
G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/(1 + x^k) ).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 12, 17, 29, 44, 77, 114, 218, 330, 617, 987, 1913, 2968, 6068, 9500, 19263, 31399, 64268, 101702, 218891, 348559, 735823, 1205239, 2576727, 4119884, 9100854, 14588992, 31841260, 52163378, 114485092, 183947681, 414704366, 667453931, 1487920000
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 12*x^6 + 17*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x/(1 + x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + x^6 +...+ x^(n+1) +...
G_2(x) = x + x^3 + 2*x^5 + 5*x^7 + 14*x^9 +...+ A000108(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 3*x^7 + 12*x^10 + 55*x^13 +...+ A001764(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 4*x^9 + 22*x^13 + 140*x^17 +...+ A002293(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 5*x^11 + 35*x^16 + 285*x^21 +...+ A002294(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 6*x^13 + 51*x^19 + 506*x^25 +...+ A002295(n)*x^(6*n+1) +...
G_7(x) = x + x^8 + 7*x^15 + 70*x^22 + 819*x^29 +...+ A002296(n)*x^(7*n+1) +...
Note that G_n(x) = x + x*G_n(x)^n.
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x/(1+x^k+x*O(x^n))))),n)}
for(n=0,45,print1(a(n),", "))
A235534
a(n) = binomial(6*n, 2*n) / (4*n + 1).
Original entry on oeis.org
1, 3, 55, 1428, 43263, 1430715, 50067108, 1822766520, 68328754959, 2619631042665, 102240109897695, 4048514844039120, 162250238001816900, 6568517413771094628, 268225186597703313816, 11034966795189838872624, 456949965738717944767791
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2), this sequence (l=4, k=2),
A235536 (l=6, k=2),
A187357 (l=3, k=3),
A235535 (l=6, k=3).
-
l:=4; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
-
Table[Binomial[6 n, 2 n]/(4 n + 1), {n, 0, 20}]
Comments